zoukankan      html  css  js  c++  java
  • BZOJ1010:[HNOI2008]玩具装箱——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010

      P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

    还是简单的设f[i]为前i个玩具的装箱方案最小费用,显然有:

    f[i]=min{f[j]+(j-i-1+sum[i]-sum[j]-L)^2}

    其中sum为c的前缀和。

    将平方里面的数按照和i/和j分类,于是设a[i]=sum[i]+i-L-1,b[i]=sum[i]+i,得到:

    f[i]=min{f[j]+(a[i]-b[j])^2}

    展开得到:

    f[i]=min{f[j]+a[i]^2+b[j]^2-2*a[i]b[j]}

    k<j<i时,如果f[k]+b[k]^2-2*a[i]b[k]>f[j]+b[j]^2-2*a[i]b[j]则把k踢出。

    化成:(f[j]-f[k]+b[j]^2-b[k]^2)/(2*(b[j]-b[k]))<a[i],显然可以斜率优化了。

    至于剩下的套路部分就请看土地购买这道题的解法吧。

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    const int N=1000010;
    const ll INF=1e18;
    inline int read(){
        int X=0,w=1;char ch=0;
        while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
        while(ch>='0'&&ch<='9')X=(X<<1)+(X<<3)+ch-'0',ch=getchar();
        return X*w;
    }
    int n,l,r;
    ll f[N],q[N],sum[N],a[N],b[N],L;
    inline double suan(int k,int j){
        return 0.5*(f[j]-f[k]+b[j]*b[j]-b[k]*b[k])/(b[j]-b[k]);
    }
    int main(){
        n=read(),L=read();
        for(int i=1;i<=n;i++){
            sum[i]=sum[i-1]+read();
            a[i]=sum[i]+i-L-1;
            b[i]=sum[i]+i;
        }
        for(int i=1;i<=n;i++){
            while(l<r&&suan(q[l],q[l+1])<(double)a[i])l++;
            f[i]=f[q[l]]+(a[i]-b[q[l]])*(a[i]-b[q[l]]);
            while(l<r&&suan(q[r],i)<suan(q[r-1],q[r]))r--;
            q[++r]=i;
        }
        printf("%lld
    ",f[n]);
        return 0;
    }

    +++++++++++++++++++++++++++++++++++++++++++

    +本文作者:luyouqi233。               +

    +欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

    +++++++++++++++++++++++++++++++++++++++++++

  • 相关阅读:
    Analysis Services 查询性能十大最佳实践(转)
    谈谈一年来对“数据仓库”概念的困惑、探索和感悟(转)
    用sql语句添加删除主键
    大文件流操作及编码
    SQL Server CONVERT() 函数
    正则表达式提取案例1
    解析SQL SERVER存储过程返回值
    文件操作类Path
    HTTP状态码
    自己写的遮罩层效果
  • 原文地址:https://www.cnblogs.com/luyouqi233/p/8410001.html
Copyright © 2011-2022 走看看