http://poj.org/problem?id=1284
给一个奇质数p,求p的原根数量。
有一个结论:当正整数n存在原根时,其一共有phi(phi(n))个不同余的原根。
所以答案为phi(p-1)。
#include<algorithm> #include<iostream> #include<cstring> #include<cctype> #include<cstdio> #include<cmath> #include<stack> using namespace std; typedef long long ll; const int N=70010; int phi[N],su[N]; bool he[N]; void Euler(int n){ phi[1]=1; int tot=0; for(int i=2;i<=n;i++){ if(!he[i]){ su[++tot]=i; phi[i]=i-1; } for(int j=1;j<=tot;j++){ int p=su[j]; if(i*p>n)break; he[i*p]=1; if(i%p==0){ phi[i*p]=phi[i]*p; break; }else phi[i*p]=phi[i]*phi[p]; } } } int main(){ int n; Euler(N-10); while(scanf("%d",&n)!=EOF){ printf("%d ",phi[n-1]); } return 0; }
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +
+++++++++++++++++++++++++++++++++++++++++++