https://www.lydsy.com/JudgeOnline/problem.php?id=3456
求出n个点的简单(无重边无自环)无向连通图数目
模数很熟悉,先敲一个NTT。
然后通过推导式子就做完啦!
我觉得就算怎么讲也没有下面这一位好:http://blog.miskcoo.com/2015/05/bzoj-3456
另外多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse
至少我学到了:当你有个卷积知道答案,求卷积的一项时转换成生成函数再FFT一下就好了。
#include<cstdio> #include<cctype> #include<cstring> #include<vector> #include<cmath> #include<algorithm> #include<iostream> using namespace std; typedef long long ll; const ll P=1004535809; const int G=3; const int N=5e5+5; ll qpow(ll a,ll n,ll p){ ll res=1; while(n){ if(n&1)res=res*a%p; a=a*a%p;n>>=1; } return res; } void MTT(ll a[],int n,int on){ for(int i=1,j=n>>1;i<n-1;i++){ if(i<j)swap(a[i],a[j]); int k=n>>1; while(j>=k){j-=k;k>>=1;} if(j<k)j+=k; } for(int i=2;i<=n;i<<=1){ ll res=qpow(G,(P-1)/i,P); for(int j=0;j<n;j+=i){ ll w=1; for(int k=j;k<j+i/2;k++){ ll u=a[k],t=w*a[k+i/2]%P; a[k]=(u+t)%P; a[k+i/2]=(u-t+P)%P; w=w*res%P; } } } if(on==-1){ ll inv=qpow(n,P-2,P); a[0]=a[0]*inv%P; for(int i=1;i<=n/2;i++){ a[i]=a[i]*inv%P; if(i!=n-i)a[n-i]=a[n-i]*inv%P; swap(a[i],a[n-i]); } } } ll t[N]; void inv(int deg,ll a[],ll b[]){ if(deg==1){ b[0]=qpow(a[0],P-2,P); return; } inv((deg+1)>>1,a,b); int n=1; while(n<(deg<<1))n<<=1; for(int i=0;i<deg;i++)t[i]=a[i]; for(int i=deg;i<n;i++)t[i]=0; MTT(t,n,1);MTT(b,n,1); for(int i=0;i<n;i++) b[i]=b[i]*(2-b[i]*t[i]%P+P)%P; MTT(b,n,-1); for(int i=deg;i<n;i++)b[i]=0; } int n; ll f[N],g[N],tmp[N],c[N],jc[N],C[N][3]; inline void init(){ jc[0]=jc[1]=1;C[0][2]; for(int i=2;i<=n;i++)jc[i]=jc[i-1]*i%P; for(int i=1;i<=n;i++)C[i][2]=C[i-1][2]+i-1; } int main(){ scanf("%d",&n);init(); for(int i=0;i<=n;i++){ g[i]=qpow(2,C[i][2],P)*qpow(jc[i],P-2,P)%P; if(i)c[i]=qpow(2,C[i][2],P)*qpow(jc[i-1],P-2,P)%P; } int nn=1; while(nn<=n)nn<<=1; inv(nn,g,tmp);memcpy(g,tmp,sizeof(tmp)); MTT(g,nn,1);MTT(c,nn,1); for(int i=0;i<nn;i++)f[i]=g[i]*c[i]%P; MTT(f,nn,-1); f[n]=f[n]*jc[n-1]%P; printf("%lld ",f[n]); return 0; }
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +
+++++++++++++++++++++++++++++++++++++++++++