单点登录(SSO)是复杂应用系统的基本需求,Yale CAS是目前常用的开源解决方案。CAS认证中心,基于其特殊作用,自然会成为整个应用系统的核心,所有应用系统的认证工作,都将请求到CAS来完成。因此CAS服务器是整个应用的关键节点,CAS发生故障,所有系统都将陷入瘫痪。同时,CAS的负载能力要足够强,能够承担所有的认证请求响应。利用负载均衡和集群技术,不仅能克服CAS单点故障,同时将认证请求分布到多台CAS服务器上,有效减轻单台CAS服务器的请求压力。下面将基于CAS 3.4.5来讨论下CAS集群。
CAS的工作原理,主要是基于票据(Ticket)来实现的(参见 CAS基本原理)。CAS票据,存储在TicketRegistry中,因此要想实现CAS Cluster, 必须要多台CAS之间共享所有的Ticket,采用统一的TicketRegistry,可以达到此目的。 缺省的CAS实现中,TicketRegistry在内存中实现,不同的CAS服务器有自己单独的TicketRegistry,因此是不支持分布式集群的。但CAS提供了支持TicketRegistry分布式的接口 org.jasig.cas.ticket.registry.AbstractDistributedTicketRegistry,我们可以实现这个接口实现多台CAS服务器TicketRegistry共享,从而实现CAS集群。
同时,较新版本CAS使用SpringWebFlow作为认证流程,而webflow需要使用session存储流程相关信息,因此实现CAS集群,我们还得需要让不同服务器的session进行共享。
我们采用内存数据库Redis来实现TicketRegistry,让多个CAS服务器共用同一个TicketRegistry。同样方法,我们让session也存储在Redis中,达到共享session的目的。下面就说说如何用 Redis来实现TicketRegistry,我们使用Java调用接口Jedis来操作Redis,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.util.Collection; import org.jasig.cas.ticket.Ticket; import org.jasig.cas.ticket.TicketGrantingTicket; import org.jasig.cas.ticket.registry.AbstractDistributedTicketRegistry; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.JedisPoolConfig; /* * TicketRegistry using Redis, to solve CAS Cluster. * * @author ZL * */ public class RedisTicketRegistry extends AbstractDistributedTicketRegistry { private static int redisDatabaseNum; private static String hosts; private static int port; private static int st_time; //ST最大空闲时间 private static int tgt_time; //TGT最大空闲时间 private static JedisPool cachePool; static { redisDatabaseNum = PropertiesConfigUtil.getPropertyInt( "redis_database_num" ); hosts = PropertiesConfigUtil.getProperty( "hosts" ); port = PropertiesConfigUtil.getPropertyInt( "port" ); st_time = PropertiesConfigUtil.getPropertyInt( "st_time" ); tgt_time = PropertiesConfigUtil.getPropertyInt( "tgt_time" ); cachePool = new JedisPool( new JedisPoolConfig(), hosts, port); } public void addTicket(Ticket ticket) { Jedis jedis = cachePool.getResource(); jedis.select(redisDatabaseNum); int seconds = 0 ; String key = ticket.getId() ; if (ticket instanceof TicketGrantingTicket){ //key = ((TicketGrantingTicket)ticket).getAuthentication().getPrincipal().getId(); seconds = tgt_time/ 1000 ; } else { seconds = st_time/ 1000 ; } ByteArrayOutputStream bos = new ByteArrayOutputStream(); ObjectOutputStream oos = null ; try { oos = new ObjectOutputStream(bos); oos.writeObject(ticket); } catch (Exception e){ log.error( "adding ticket to redis error." ); } finally { try { if ( null !=oos) oos.close(); } catch (Exception e){ log.error( "oos closing error when adding ticket to redis." ); } } jedis.set(key.getBytes(), bos.toByteArray()); jedis.expire(key.getBytes(), seconds); cachePool.returnResource(jedis); } public Ticket getTicket( final String ticketId) { return getProxiedTicketInstance(getRawTicket(ticketId)); } private Ticket getRawTicket( final String ticketId) { if ( null == ticketId) return null ; Jedis jedis = cachePool.getResource(); jedis.select(redisDatabaseNum); Ticket ticket = null ; ByteArrayInputStream bais = new ByteArrayInputStream(jedis.get(ticketId.getBytes())); ObjectInputStream ois = null ; try { ois = new ObjectInputStream(bais); ticket = (Ticket)ois.readObject(); } catch (Exception e){ log.error( "getting ticket to redis error." ); } finally { try { if ( null !=ois) ois.close(); } catch (Exception e){ log.error( "ois closing error when getting ticket to redis." ); } } cachePool.returnResource(jedis); return ticket; } public boolean deleteTicket( final String ticketId) { if (ticketId == null ) { return false ; } Jedis jedis = cachePool.getResource(); jedis.select(redisDatabaseNum); jedis.del(ticketId.getBytes()); cachePool.returnResource(jedis); return true ; } public Collection<Ticket> getTickets() { throw new UnsupportedOperationException( "GetTickets not supported." ); } protected boolean needsCallback() { return false ; } protected void updateTicket( final Ticket ticket) { addTicket(ticket); } } |
同时,我们在ticketRegistry.xml配置文件中,将TicketRegistry实现类指定为上述实现。即修改下面的class值
1
2
3
4
5
|
<!-- Ticket Registry --> < bean id = "ticketRegistry" class = "org.jasig.cas.util.RedisTicketRegistry" /> <!-- <bean id="ticketRegistry" class="org.jasig.cas.ticket.registry.DefaultTicketRegistry" /> --> |
因为使用了Redis的expire功能,注释掉如下代码:
1
2
3
4
5
6
7
8
9
10
11
12
|
<!-- TICKET REGISTRY CLEANER --> lt;!-- < bean id = "ticketRegistryCleaner" class = "org.jasig.cas.ticket.registry.support.DefaultTicketRegistryCleaner" p:ticketRegistry-ref = "ticketRegistry" /> < bean id = "jobDetailTicketRegistryCleaner" class = "org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean" p:targetObject-ref = "ticketRegistryCleaner" p:targetMethod = "clean" /> < bean id = "triggerJobDetailTicketRegistryCleaner" class = "org.springframework.scheduling.quartz.SimpleTriggerBean" p:jobDetail-ref = "jobDetailTicketRegistryCleaner" p:startDelay = "20000" p:repeatInterval = "5000000" /> --> |
通过上述实现TicketRegistry,多台CAS服务器就可以共用同一个 TicketRegistry。对于如何共享session,我们可以采用现成的第三方工具tomcat-redis-session-manager直接集成即可。对于前端web服务器(如nginx),做好负载均衡配置,将认证请求分布转发给后面多台CAS,实现负载均衡和容错目的。