zoukankan      html  css  js  c++  java
  • 合并函数总结

    通过python下的pandas库下的merge方法和concat方法来实现数据集的合并。

    1.merge

    merge 函数通过一个或多个键来将数据集的行连接起来。该函数的主要 应用场景是针对同一个主键存在两张包含不同特征的表,通过该主键的连接,将两张表进行合并。合并之后,两张表的行数没有增加,列数是两张表的列数之和减一。 
    函数的具体参数为:

    merge(left,right,how='inner',on=None,left_on=None,right_on=None,
    left_index=False,right_index=False,sort=False,suffixes=('_x','_y'),copy=True)
    • on=None 指定连接的列名,若两列希望连接的列名不一样,可以通过left_on和right_on 来具体指定
    • how=’inner’,参数指的是左右两个表主键那一列中存在不重合的行时,取结果的方式:inner表示交集,outer 表示并集,left 和right 表示取某一边。 
      举例如下
    import pandas as pd
    df1 = pd.DataFrame([[1,2,3],[5,6,7],[3,9,0],[8,0,3]],columns=['x1','x2','x3'])
    df2 = pd.DataFrame([[1,2],[4,6],[3,9]],columns=['x1','x4'])
    print df1
    print df2
    df3 = pd.merge(df1,df2,how = 'left',on='x1')
    print df3

    在这里我分别设置了两个DataFrame类别的变量df1,df2,(平常我们用的表csv文件,读取之后也是DataFrame 格式)。然后我设置 on=’x1’,即以两个表中的x1为主键进行连接,设置how=’left’ ,即是以两个表中merge函数中左边那个表的行为准,保持左边表行数不变,拿右边的表与之合并。结果如下:

    片描述
    第一个结果为how=’left’的情况。第二个结果为how=’inner’的情况。 
    注意:在how=’left’设置后,左边行之所以能够保持不变,是因为右边的表主键列没有重复的值,x下面我会举个例子作为思考题: 
    这里写图片描述 
    这是两张表,分别为df1,df2;

    第一个问题: 
    在默认情况下即merge(df1,df2)其他参数为默认值的返回结果是 什么? 
    第二个问题: 
    在加上how=’left’之后的返回结果是什么? 
    看完了问题之后,返回去看这两张表,不着急看答案,仔细想想。

    这里写图片描述

    这两个问题明白之后,表之间的连接和映射应该都能够明白了。

    2.concat

    concat 与其说是连接,更准确的说是拼接。就是把两个表直接合在一起。于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis 。 
    函数的具体参数是:

    concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False)
    • objs 是需要拼接的对象集合,一般为列表或者字典
    • axis=0 是行拼接,拼接之后行数增加,列数也根据join来定,join=’outer’时,列数是两表并集。同理join=’inner’,列数是两表交集。

    在默认情况下,axis=0为纵向拼接,此时有

    concat([df1,df2]) 等价于 df1.append(df2)

    在axis=1 时为横向拼接 ,此时有

    concat([df1,df2],axis=1) 等价于 merge(df1,df2,left_index=True,right_index=True,how='outer')

    举个例子

    import pandas as pd
    
    df1 = pd.DataFrame({'key':['a','a','b','b'],'data1':range(4)})
    print df1
    df2 = pd.DataFrame({'key':['b','b','c','c'],'data2':range(4)})
    print df2
    print pd.concat([df1,df2],axis=1)
    print pd.merge(df1,df2,left_index=True,right_index=True,how='outer')

    这里写图片描述

  • 相关阅读:
    redisserver 双击闪退
    PHP QueryList采集器
    【ubuntu】配置国内源
    【ffmpeg基础知识】文件的删除和重命名
    【ffmpeg基础知识】打印视频meta信息
    Ubuntu下pkgconfig环境变量配置
    音视频基础知识
    【linux小技巧】返回上一个目录,vi默认显示行号,vi多窗口
    【ffmpeg基础知识】ffmpeg操作目录实现list
    【ffmpeg基础知识】日常日志
  • 原文地址:https://www.cnblogs.com/lvpengbo/p/8658297.html
Copyright © 2011-2022 走看看