zoukankan      html  css  js  c++  java
  • {HDU}{2516}{取石子游戏}{斐波那契博弈}

    题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家。

    思路:斐波那契博弈,这个题的证明过程太精彩了!

    一个重要的定理:任何正整数都可以表示为若干个不连续的斐波那契数的和。

    一、归纳法证明斐波那契数列是必败点

    为了方便,我们将n记为f[i]。

    1、当i=2时,先手只能取1颗,显然必败,结论成立。

    2、假设当i<=k时,结论成立。

         则当i=k+1时,f[i] = f[k]+f[k-1]。

         则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。

        (一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])

         对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。

         如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。

         我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,对两值作差后不难得出,后者大。

         所以我们得到,x<1/2*f[k]。

         即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。

         即i=k+1时,结论依然成立。

    二、归纳法证明非斐波那契数为必胜点

    将g[n]=f[a1]+f[a2]+...+f[ap],其中f[ai]为斐波那契数,先手取最小的堆f[ap],后手只能取f[a(p-1)],这样就成了面对后手先取斐波那契数的局面,必败,从而先手必胜。

    不得不承认,这两步证明很nice,第一步证明的严谨,第二步证明的漂亮,大脑运作的还不是很快啊~

    =================================================================================================

    特别感谢:

    http://blog.csdn.net/acm_cxlove/article/details/7835016

    http://blog.csdn.net/dgq8211/article/details/7602807

    http://yjq24.blogbus.com/logs/46150651.html

    =======================================================================================================

  • 相关阅读:
    python 登录与注册
    python 深浅拷贝
    列表|字典|集合推导式
    正则表达式——笔记
    Python thread
    allure报告自定义logo和名称
    回归测试用例编写思路
    测试用例规范【如何编写测试用例】
    git与pycharm的使用详解(git+gitlab+pycham)
    接口自动化
  • 原文地址:https://www.cnblogs.com/lvpengms/p/3922330.html
Copyright © 2011-2022 走看看