zoukankan      html  css  js  c++  java
  • poj3368(RMQ——ST)

    Frequent values
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 16543   Accepted: 5985

    Description

    You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.

    Input

    The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the 
    query.

    The last test case is followed by a line containing a single 0.

    Output

    For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.

    Sample Input

    10 3
    -1 -1 1 1 1 1 3 10 10 10
    2 3
    1 10
    5 10
    0

    Sample Output

    1
    4
    3

    Source


    分析
    因为题上说是有序的,就可以求一样的数的数量,再来使用RMQ
    开始我也不会做,看了别人的写的,思路还放不开
    还记得以前求众数只会用桶排序,现在想起来实在可笑,但是路还很长
    AC代码
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cmath>
     4 #define MAX 100010
     5 using namespace std;
     6 int f[MAX][20];
     7 int num[MAX];
     8 int sum[MAX];
     9 int n,Q,ans,a,b;
    10 int _max(int a,int b)
    11 {
    12     return a>b?a:b;
    13 }
    14 void ST()
    15 {
    16     for(int i=1;i<=n;i++)
    17         f[i][0]=sum[i];
    18     int k=log((double)(n+1))/log(2.0);
    19     for(int i=1;i<=k;i++)
    20       for(int j=1;j+(1<<i)<=n+1;j++)//n+1
    21         f[j][i]=_max(f[j][i-1],f[j+(1<<(i-1))][i-1]);    
    22 }
    23 int RMQ_Query(int l,int r)
    24 {
    25     if(l>r)return 0;
    26     int k=log((double)(r-l+1))/log(2.0);
    27     return _max(f[l][k],f[r-(1<<k)+1][k]);//r-(1<<k)一定要+1 
    28 }
    29 int main()
    30 {
    31     while(scanf("%d",&n)!=EOF,n)
    32     {
    33         scanf("%d",&Q);
    34         for(int i=1;i<=n;i++)
    35         {
    36             scanf("%d",num+i);
    37             if(i==1)
    38             {
    39                 sum[i]=1;
    40                 continue;
    41             }
    42             if(num[i]==num[i-1])
    43             sum[i]=sum[i-1]+1;
    44             else sum[i]=1;
    45         }
    46         ST();
    47         while(Q--)
    48         {
    49             scanf("%d%d",&a,&b);
    50             if(a==b||num[a]==num[b])
    51             {
    52                 cout<<b-a+1<<endl;
    53                 continue;
    54             }
    55             int t=a;
    56             while(num[t]==num[t-1]&&t<=b)//t 必须小于 b 
    57                 t++;
    58             int cnt=RMQ_Query(t,b);
    59             ans=_max(cnt,t-a);
    60             printf("%d
    ",ans);
    61         }
    62     }
    63     return 0;
    64 }
     
  • 相关阅读:
    《数据结构》树与二叉树
    C/C++ 一点笔记(1)
    c#中隐藏基类方法的作用
    VS2010 灵活运用快捷操作功能(新手必看)
    C# 之类复制 MemberwiseClone与Clone(深 浅 Clone)
    DLL笔记
    批处理文件
    .NET Remoting(一)
    MSI安装数据库
    关于用户角色权限的一点想法(RBAC)
  • 原文地址:https://www.cnblogs.com/lwhinlearning/p/5677186.html
Copyright © 2011-2022 走看看