zoukankan      html  css  js  c++  java
  • 一种平面提取的点云简化算法

    1.本算法使用了PCL点云库,因此运行此代码需要安装PCL (http://pointclouds.org/)

    其中平面区域的简化效率时70%,其它区域的简化效率时30%.

    //downSample
    #include <pcl/ModelCoefficients.h>
    #include <pcl/point_types.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/filters/extract_indices.h>
    #include <pcl/filters/voxel_grid.h>
    #include <pcl/features/normal_3d.h>
    #include <pcl/kdtree/kdtree.h>
    #include <pcl/sample_consensus/method_types.h>
    #include <pcl/sample_consensus/model_types.h>
    #include <pcl/segmentation/sac_segmentation.h>
    #include <pcl/segmentation/extract_clusters.h>
    
    
    int 
    main (int argc, char** argv)
    {
      srand(time(0));
      // Read in the cloud data
      pcl::PCDReader reader;
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
      reader.read ("table_scene_lms400.pcd", *cloud_filtered);
      std::cout << "PointCloud has: " << cloud_filtered->points.size () << " data points." << std::endl; //*
    
      //输出
      ofstream fout("plane.txt");
    
      // Create the segmentation object for the planar model and set all the parameters
      pcl::SACSegmentation<pcl::PointXYZ> seg;
      pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
      pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
      pcl::PCDWriter writer;
      seg.setOptimizeCoefficients (true);
      seg.setModelType (pcl::SACMODEL_PLANE);
      seg.setMethodType (pcl::SAC_RANSAC);
      seg.setMaxIterations (100);
      seg.setDistanceThreshold (0.02);    //此处可以自己修改,一般保持默认即可
    
      int i=0, nr_points = (int) cloud_filtered->points.size ();
      while (cloud_filtered->points.size () > 0.3 * nr_points)    //此处的0.3可以修改,一般保持默认即可
      {
        // Segment the largest planar component from the remaining cloud
        seg.setInputCloud (cloud_filtered);
        seg.segment (*inliers, *coefficients);
        if (inliers->indices.size () == 0)
        {
          std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
          break;
        }
    
        // Extract the planar inliers from the input cloud
        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud (cloud_filtered);
        extract.setIndices (inliers);
        extract.setNegative (false);
    
        // Get the points associated with the planar surface
        extract.filter (*cloud_plane);
        std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
        for (int i = 0; i <cloud_plane->points.size (); i++)
        {
            if (rand() %100 < 30)            //平面简化率为70%
            {
                fout<<cloud_plane->points[i].x<<" "<<cloud_plane->points[i].y<<" "<<cloud_plane->points[i].z<<endl;
            }
        }
        
        // Remove the planar inliers, extract the rest
        extract.setNegative (true);
        extract.filter (*cloud_f);
        *cloud_filtered = *cloud_f;
      }
      for (int i = 0; i <cloud_filtered->points.size (); i++)
      {
          if (rand() %100 < 70)            //简化率为30%
          {
          fout<<cloud_filtered->points[i].x<<" "<<cloud_filtered->points[i].y<<" "<<cloud_filtered->points[i].z<<endl;
           }
      }
      
      return (0);
    }
    View Code

    2.简化前后对比

    3.总结说明

    分别对比三组实验数据:

    第一组:桌面和地面简化率较高,其他的对象简化率地

    第二组:人简化率地而平面板和地面简化率较高

    第三组:墙面上的镶嵌物体得到了很好保留的同时,墙面和地面得到了和好的简化

    4.实验第一组数据(其它两组数据为实验室数据不能提供)

    http://pan.baidu.com/s/1i3kVW37 或

    https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_mug_stereo_textured.pcd

  • 相关阅读:
    RPC学习
    json
    jsf
    ajax分析
    async分析
    web后台
    servlet和CGI区别(转)
    forward和redirect
    (转)jvm
    Async分析
  • 原文地址:https://www.cnblogs.com/lwngreat/p/4312749.html
Copyright © 2011-2022 走看看