zoukankan      html  css  js  c++  java
  • [object_detect]使用MobileNetSSD进行对象检测

    使用MobileNetSSD进行对象检测

    1.单帧图片识别

    • object_detection.py
    # 导入必要的包
    import numpy as np
    import argparse
    import cv2
    
    # 构造参数 parse 并解析参数
    ap = argparse.ArgumentParser()
    ap.add_argument("-i", "--image", required=True,
    	help="path to input image")
    ap.add_argument("-p", "--prototxt", required=True,
    	help="path to Caffe 'deploy' prototxt file")
    ap.add_argument("-m", "--model", required=True,
    	help="path to Caffe pre-trained model")
    ap.add_argument("-c", "--confidence", type=float, default=0.2,
    	help="minimum probability to filter weak detections")
    args = vars(ap.parse_args())
    
    # 初始化 MobileNet SSD 训练的类标签列表
    # 检测,然后为每个类生成一组边界框颜色
    CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
    	"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
    	"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
    	"sofa", "train", "tvmonitor"]
    COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
    
    # 从磁盘加载我们的序列化模型
    print("[INFO] loading model...")
    net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
    
    # 加载输入图像并为图像构造一个输入 blob
    # 将大小调整为固定的 300x300 像素,然后对其进行标准化
    #(注意:标准化是通过 MobileNet SSD 完成执行的
    image = cv2.imread(args["image"])
    (h, w) = image.shape[:2]
    blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)
    
    # 通过网络传递blob并获得检测
    # 预测
    print("[INFO] computing object detections...")
    net.setInput(blob)
    detections = net.forward()
    
    # 循环检测
    for i in np.arange(0, detections.shape[2]):
    	# 提取与相关的置信度(即概率)
    	confidence = detections[0, 0, i, 2]
    
    	# 通过确保置信度大于最小置信度来过滤无效检测
    	if confidence > args["confidence"]:
    		# 从类标签detections中提取索引,
    		# 然后计算物体边界框的 (x, y) 坐标
    		idx = int(detections[0, 0, i, 1])
    		box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
    		(startX, startY, endX, endY) = box.astype("int")
    
    		# 显示预测结果
    		label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
    		print("[INFO] {}".format(label))
    		cv2.rectangle(image, (startX, startY), (endX, endY),
    			COLORS[idx], 2)
    		y = startY - 15 if startY - 15 > 15 else startY + 15
    		cv2.putText(image, label, (startX, y),
    			cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
    
    # 显示输出图像
    cv2.imshow("Output", image)
    cv2.waitKey(0)
    
    • 调用方法:
    # 用法
    python object_detection.py --image images/example_01.jpg --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
    
    • 测试效果

    2.视频流实时检测对象

    • real_time_object_detection.py
    # 导入必要的包
    from imutils.video import VideoStream
    from imutils.video import FPS
    import numpy as np
    import argparse
    import imutils
    import time
    import cv2
    
    # 构造参数 parse 并解析参数
    ap = argparse.ArgumentParser()
    ap.add_argument("-p", "--prototxt", required=True,
    	help="path to Caffe 'deploy' prototxt file")
    ap.add_argument("-m", "--model", required=True,
    	help="path to Caffe pre-trained model")
    ap.add_argument("-c", "--confidence", type=float, default=0.2,
    	help="minimum probability to filter weak detections")
    args = vars(ap.parse_args())
    
    # 初始化 MobileNet SSD 训练的类标签列表
    #  检测,然后为每个类生成一组边界框颜色
    CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
    	"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
    	"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
    	"sofa", "train", "tvmonitor"]
    COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
    
    #  从磁盘加载我们的序列化模型
    print("[INFO] loading model...")
    net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
    
    # 初始化视频流,允许摄像机传感器预加载,
    # 并初始化 FPS 计数器
    print("[INFO] starting video stream...")
    vs = VideoStream(src=0).start()
    time.sleep(2.0)
    fps = FPS().start()
    
    # 循环读取视频流中的帧
    while True:
    	# 从线程视频流中抓取帧并调整其大小
    	# 最大宽度为 400 像素
    	frame = vs.read()
    	frame = imutils.resize(frame, width=400)
    
    	# 获取帧尺寸并将其转换为 blob
    	(h, w) = frame.shape[:2]
    	blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
    		0.007843, (300, 300), 127.5)
    
    	# 通过网络传递blob并获得检测
    	# 预测
    	net.setInput(blob)
    	detections = net.forward()
    
    	# 循环检测
    	for i in np.arange(0, detections.shape[2]):
    		# 提取与相关联的置信度(即概率)用来预测
    		confidence = detections[0, 0, i, 2]
    
    		# 通过确保置信度大于最小置信度来过滤无效检测
    		if confidence > args["confidence"]:
    			# 从类标签 detections中提取索引,然后计算物体的边界框 (x, y) 坐标
    			idx = int(detections[0, 0, i, 1])
    			box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
    			(startX, startY, endX, endY) = box.astype("int")
    
    			# 在当前帧上绘制预测
    			label = "{}: {:.2f}%".format(CLASSES[idx],
    				confidence * 100)
    			cv2.rectangle(frame, (startX, startY), (endX, endY),
    				COLORS[idx], 2)
    			y = startY - 15 if startY - 15 > 15 else startY + 15
    			cv2.putText(frame, label, (startX, y),
    				cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
    
    	# 显示输出帧
    	cv2.imshow("Frame", frame)
    	key = cv2.waitKey(1) & 0xFF
    
    	# 如果按下 `q` 键,则跳出循环
    	if key == ord("q"):
    		break
    
    	# 更新 FPS 计数器
    	fps.update()
    
    # 停止定时器并显示 FPS 信息
    fps.stop()
    print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
    print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
    
    # 做一些清理
    cv2.destroyAllWindows()
    vs.stop()
    
    • 调用方法:
    # 用法
    python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
    
    • 测试效果:

    3.配置文件

    设置卷积层及其模型相关配置

    • MobileNetSSD_deploy.prototxt.txt
    name: "MobileNet-SSD"
    input: "data"
    input_shape {
      dim: 1
      dim: 3
      dim: 300
      dim: 300
    }
    layer {
      name: "conv0"
      type: "Convolution"
      bottom: "data"
      top: "conv0"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 32
        pad: 1
        kernel_size: 3
        stride: 2
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv0/relu"
      type: "ReLU"
      bottom: "conv0"
      top: "conv0"
    }
    layer {
      name: "conv1/dw"
      type: "Convolution"
      bottom: "conv0"
      top: "conv1/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 32
        pad: 1
        kernel_size: 3
        group: 32
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv1/dw/relu"
      type: "ReLU"
      bottom: "conv1/dw"
      top: "conv1/dw"
    }
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "conv1/dw"
      top: "conv1"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 64
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv1/relu"
      type: "ReLU"
      bottom: "conv1"
      top: "conv1"
    }
    layer {
      name: "conv2/dw"
      type: "Convolution"
      bottom: "conv1"
      top: "conv2/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 64
        pad: 1
        kernel_size: 3
        stride: 2
        group: 64
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv2/dw/relu"
      type: "ReLU"
      bottom: "conv2/dw"
      top: "conv2/dw"
    }
    layer {
      name: "conv2"
      type: "Convolution"
      bottom: "conv2/dw"
      top: "conv2"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 128
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv2/relu"
      type: "ReLU"
      bottom: "conv2"
      top: "conv2"
    }
    layer {
      name: "conv3/dw"
      type: "Convolution"
      bottom: "conv2"
      top: "conv3/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 128
        pad: 1
        kernel_size: 3
        group: 128
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv3/dw/relu"
      type: "ReLU"
      bottom: "conv3/dw"
      top: "conv3/dw"
    }
    layer {
      name: "conv3"
      type: "Convolution"
      bottom: "conv3/dw"
      top: "conv3"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 128
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv3/relu"
      type: "ReLU"
      bottom: "conv3"
      top: "conv3"
    }
    layer {
      name: "conv4/dw"
      type: "Convolution"
      bottom: "conv3"
      top: "conv4/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 128
        pad: 1
        kernel_size: 3
        stride: 2
        group: 128
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv4/dw/relu"
      type: "ReLU"
      bottom: "conv4/dw"
      top: "conv4/dw"
    }
    layer {
      name: "conv4"
      type: "Convolution"
      bottom: "conv4/dw"
      top: "conv4"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 256
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv4/relu"
      type: "ReLU"
      bottom: "conv4"
      top: "conv4"
    }
    layer {
      name: "conv5/dw"
      type: "Convolution"
      bottom: "conv4"
      top: "conv5/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
        group: 256
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv5/dw/relu"
      type: "ReLU"
      bottom: "conv5/dw"
      top: "conv5/dw"
    }
    layer {
      name: "conv5"
      type: "Convolution"
      bottom: "conv5/dw"
      top: "conv5"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 256
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv5/relu"
      type: "ReLU"
      bottom: "conv5"
      top: "conv5"
    }
    layer {
      name: "conv6/dw"
      type: "Convolution"
      bottom: "conv5"
      top: "conv6/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
        stride: 2
        group: 256
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv6/dw/relu"
      type: "ReLU"
      bottom: "conv6/dw"
      top: "conv6/dw"
    }
    layer {
      name: "conv6"
      type: "Convolution"
      bottom: "conv6/dw"
      top: "conv6"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv6/relu"
      type: "ReLU"
      bottom: "conv6"
      top: "conv6"
    }
    layer {
      name: "conv7/dw"
      type: "Convolution"
      bottom: "conv6"
      top: "conv7/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
        group: 512
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv7/dw/relu"
      type: "ReLU"
      bottom: "conv7/dw"
      top: "conv7/dw"
    }
    layer {
      name: "conv7"
      type: "Convolution"
      bottom: "conv7/dw"
      top: "conv7"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv7/relu"
      type: "ReLU"
      bottom: "conv7"
      top: "conv7"
    }
    layer {
      name: "conv8/dw"
      type: "Convolution"
      bottom: "conv7"
      top: "conv8/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
        group: 512
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv8/dw/relu"
      type: "ReLU"
      bottom: "conv8/dw"
      top: "conv8/dw"
    }
    layer {
      name: "conv8"
      type: "Convolution"
      bottom: "conv8/dw"
      top: "conv8"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv8/relu"
      type: "ReLU"
      bottom: "conv8"
      top: "conv8"
    }
    layer {
      name: "conv9/dw"
      type: "Convolution"
      bottom: "conv8"
      top: "conv9/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
        group: 512
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv9/dw/relu"
      type: "ReLU"
      bottom: "conv9/dw"
      top: "conv9/dw"
    }
    layer {
      name: "conv9"
      type: "Convolution"
      bottom: "conv9/dw"
      top: "conv9"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv9/relu"
      type: "ReLU"
      bottom: "conv9"
      top: "conv9"
    }
    layer {
      name: "conv10/dw"
      type: "Convolution"
      bottom: "conv9"
      top: "conv10/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
        group: 512
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv10/dw/relu"
      type: "ReLU"
      bottom: "conv10/dw"
      top: "conv10/dw"
    }
    layer {
      name: "conv10"
      type: "Convolution"
      bottom: "conv10/dw"
      top: "conv10"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv10/relu"
      type: "ReLU"
      bottom: "conv10"
      top: "conv10"
    }
    layer {
      name: "conv11/dw"
      type: "Convolution"
      bottom: "conv10"
      top: "conv11/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
        group: 512
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv11/dw/relu"
      type: "ReLU"
      bottom: "conv11/dw"
      top: "conv11/dw"
    }
    layer {
      name: "conv11"
      type: "Convolution"
      bottom: "conv11/dw"
      top: "conv11"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv11/relu"
      type: "ReLU"
      bottom: "conv11"
      top: "conv11"
    }
    layer {
      name: "conv12/dw"
      type: "Convolution"
      bottom: "conv11"
      top: "conv12/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
        stride: 2
        group: 512
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv12/dw/relu"
      type: "ReLU"
      bottom: "conv12/dw"
      top: "conv12/dw"
    }
    layer {
      name: "conv12"
      type: "Convolution"
      bottom: "conv12/dw"
      top: "conv12"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 1024
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv12/relu"
      type: "ReLU"
      bottom: "conv12"
      top: "conv12"
    }
    layer {
      name: "conv13/dw"
      type: "Convolution"
      bottom: "conv12"
      top: "conv13/dw"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 1024
        pad: 1
        kernel_size: 3
        group: 1024
        engine: CAFFE
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv13/dw/relu"
      type: "ReLU"
      bottom: "conv13/dw"
      top: "conv13/dw"
    }
    layer {
      name: "conv13"
      type: "Convolution"
      bottom: "conv13/dw"
      top: "conv13"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 1024
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv13/relu"
      type: "ReLU"
      bottom: "conv13"
      top: "conv13"
    }
    layer {
      name: "conv14_1"
      type: "Convolution"
      bottom: "conv13"
      top: "conv14_1"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 256
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv14_1/relu"
      type: "ReLU"
      bottom: "conv14_1"
      top: "conv14_1"
    }
    layer {
      name: "conv14_2"
      type: "Convolution"
      bottom: "conv14_1"
      top: "conv14_2"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
        stride: 2
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv14_2/relu"
      type: "ReLU"
      bottom: "conv14_2"
      top: "conv14_2"
    }
    layer {
      name: "conv15_1"
      type: "Convolution"
      bottom: "conv14_2"
      top: "conv15_1"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 128
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv15_1/relu"
      type: "ReLU"
      bottom: "conv15_1"
      top: "conv15_1"
    }
    layer {
      name: "conv15_2"
      type: "Convolution"
      bottom: "conv15_1"
      top: "conv15_2"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
        stride: 2
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv15_2/relu"
      type: "ReLU"
      bottom: "conv15_2"
      top: "conv15_2"
    }
    layer {
      name: "conv16_1"
      type: "Convolution"
      bottom: "conv15_2"
      top: "conv16_1"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 128
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv16_1/relu"
      type: "ReLU"
      bottom: "conv16_1"
      top: "conv16_1"
    }
    layer {
      name: "conv16_2"
      type: "Convolution"
      bottom: "conv16_1"
      top: "conv16_2"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
        stride: 2
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv16_2/relu"
      type: "ReLU"
      bottom: "conv16_2"
      top: "conv16_2"
    }
    layer {
      name: "conv17_1"
      type: "Convolution"
      bottom: "conv16_2"
      top: "conv17_1"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 64
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv17_1/relu"
      type: "ReLU"
      bottom: "conv17_1"
      top: "conv17_1"
    }
    layer {
      name: "conv17_2"
      type: "Convolution"
      bottom: "conv17_1"
      top: "conv17_2"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 128
        pad: 1
        kernel_size: 3
        stride: 2
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv17_2/relu"
      type: "ReLU"
      bottom: "conv17_2"
      top: "conv17_2"
    }
    layer {
      name: "conv11_mbox_loc"
      type: "Convolution"
      bottom: "conv11"
      top: "conv11_mbox_loc"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 12
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv11_mbox_loc_perm"
      type: "Permute"
      bottom: "conv11_mbox_loc"
      top: "conv11_mbox_loc_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv11_mbox_loc_flat"
      type: "Flatten"
      bottom: "conv11_mbox_loc_perm"
      top: "conv11_mbox_loc_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv11_mbox_conf"
      type: "Convolution"
      bottom: "conv11"
      top: "conv11_mbox_conf"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 63
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv11_mbox_conf_perm"
      type: "Permute"
      bottom: "conv11_mbox_conf"
      top: "conv11_mbox_conf_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv11_mbox_conf_flat"
      type: "Flatten"
      bottom: "conv11_mbox_conf_perm"
      top: "conv11_mbox_conf_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv11_mbox_priorbox"
      type: "PriorBox"
      bottom: "conv11"
      bottom: "data"
      top: "conv11_mbox_priorbox"
      prior_box_param {
        min_size: 60.0
        aspect_ratio: 2.0
        flip: true
        clip: false
        variance: 0.1
        variance: 0.1
        variance: 0.2
        variance: 0.2
        offset: 0.5
      }
    }
    layer {
      name: "conv13_mbox_loc"
      type: "Convolution"
      bottom: "conv13"
      top: "conv13_mbox_loc"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 24
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv13_mbox_loc_perm"
      type: "Permute"
      bottom: "conv13_mbox_loc"
      top: "conv13_mbox_loc_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv13_mbox_loc_flat"
      type: "Flatten"
      bottom: "conv13_mbox_loc_perm"
      top: "conv13_mbox_loc_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv13_mbox_conf"
      type: "Convolution"
      bottom: "conv13"
      top: "conv13_mbox_conf"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 126
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv13_mbox_conf_perm"
      type: "Permute"
      bottom: "conv13_mbox_conf"
      top: "conv13_mbox_conf_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv13_mbox_conf_flat"
      type: "Flatten"
      bottom: "conv13_mbox_conf_perm"
      top: "conv13_mbox_conf_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv13_mbox_priorbox"
      type: "PriorBox"
      bottom: "conv13"
      bottom: "data"
      top: "conv13_mbox_priorbox"
      prior_box_param {
        min_size: 105.0
        max_size: 150.0
        aspect_ratio: 2.0
        aspect_ratio: 3.0
        flip: true
        clip: false
        variance: 0.1
        variance: 0.1
        variance: 0.2
        variance: 0.2
        offset: 0.5
      }
    }
    layer {
      name: "conv14_2_mbox_loc"
      type: "Convolution"
      bottom: "conv14_2"
      top: "conv14_2_mbox_loc"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 24
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv14_2_mbox_loc_perm"
      type: "Permute"
      bottom: "conv14_2_mbox_loc"
      top: "conv14_2_mbox_loc_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv14_2_mbox_loc_flat"
      type: "Flatten"
      bottom: "conv14_2_mbox_loc_perm"
      top: "conv14_2_mbox_loc_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv14_2_mbox_conf"
      type: "Convolution"
      bottom: "conv14_2"
      top: "conv14_2_mbox_conf"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 126
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv14_2_mbox_conf_perm"
      type: "Permute"
      bottom: "conv14_2_mbox_conf"
      top: "conv14_2_mbox_conf_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv14_2_mbox_conf_flat"
      type: "Flatten"
      bottom: "conv14_2_mbox_conf_perm"
      top: "conv14_2_mbox_conf_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv14_2_mbox_priorbox"
      type: "PriorBox"
      bottom: "conv14_2"
      bottom: "data"
      top: "conv14_2_mbox_priorbox"
      prior_box_param {
        min_size: 150.0
        max_size: 195.0
        aspect_ratio: 2.0
        aspect_ratio: 3.0
        flip: true
        clip: false
        variance: 0.1
        variance: 0.1
        variance: 0.2
        variance: 0.2
        offset: 0.5
      }
    }
    layer {
      name: "conv15_2_mbox_loc"
      type: "Convolution"
      bottom: "conv15_2"
      top: "conv15_2_mbox_loc"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 24
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv15_2_mbox_loc_perm"
      type: "Permute"
      bottom: "conv15_2_mbox_loc"
      top: "conv15_2_mbox_loc_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv15_2_mbox_loc_flat"
      type: "Flatten"
      bottom: "conv15_2_mbox_loc_perm"
      top: "conv15_2_mbox_loc_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv15_2_mbox_conf"
      type: "Convolution"
      bottom: "conv15_2"
      top: "conv15_2_mbox_conf"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 126
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv15_2_mbox_conf_perm"
      type: "Permute"
      bottom: "conv15_2_mbox_conf"
      top: "conv15_2_mbox_conf_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv15_2_mbox_conf_flat"
      type: "Flatten"
      bottom: "conv15_2_mbox_conf_perm"
      top: "conv15_2_mbox_conf_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv15_2_mbox_priorbox"
      type: "PriorBox"
      bottom: "conv15_2"
      bottom: "data"
      top: "conv15_2_mbox_priorbox"
      prior_box_param {
        min_size: 195.0
        max_size: 240.0
        aspect_ratio: 2.0
        aspect_ratio: 3.0
        flip: true
        clip: false
        variance: 0.1
        variance: 0.1
        variance: 0.2
        variance: 0.2
        offset: 0.5
      }
    }
    layer {
      name: "conv16_2_mbox_loc"
      type: "Convolution"
      bottom: "conv16_2"
      top: "conv16_2_mbox_loc"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 24
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv16_2_mbox_loc_perm"
      type: "Permute"
      bottom: "conv16_2_mbox_loc"
      top: "conv16_2_mbox_loc_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv16_2_mbox_loc_flat"
      type: "Flatten"
      bottom: "conv16_2_mbox_loc_perm"
      top: "conv16_2_mbox_loc_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv16_2_mbox_conf"
      type: "Convolution"
      bottom: "conv16_2"
      top: "conv16_2_mbox_conf"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 126
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv16_2_mbox_conf_perm"
      type: "Permute"
      bottom: "conv16_2_mbox_conf"
      top: "conv16_2_mbox_conf_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv16_2_mbox_conf_flat"
      type: "Flatten"
      bottom: "conv16_2_mbox_conf_perm"
      top: "conv16_2_mbox_conf_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv16_2_mbox_priorbox"
      type: "PriorBox"
      bottom: "conv16_2"
      bottom: "data"
      top: "conv16_2_mbox_priorbox"
      prior_box_param {
        min_size: 240.0
        max_size: 285.0
        aspect_ratio: 2.0
        aspect_ratio: 3.0
        flip: true
        clip: false
        variance: 0.1
        variance: 0.1
        variance: 0.2
        variance: 0.2
        offset: 0.5
      }
    }
    layer {
      name: "conv17_2_mbox_loc"
      type: "Convolution"
      bottom: "conv17_2"
      top: "conv17_2_mbox_loc"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 24
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv17_2_mbox_loc_perm"
      type: "Permute"
      bottom: "conv17_2_mbox_loc"
      top: "conv17_2_mbox_loc_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv17_2_mbox_loc_flat"
      type: "Flatten"
      bottom: "conv17_2_mbox_loc_perm"
      top: "conv17_2_mbox_loc_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv17_2_mbox_conf"
      type: "Convolution"
      bottom: "conv17_2"
      top: "conv17_2_mbox_conf"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 126
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "conv17_2_mbox_conf_perm"
      type: "Permute"
      bottom: "conv17_2_mbox_conf"
      top: "conv17_2_mbox_conf_perm"
      permute_param {
        order: 0
        order: 2
        order: 3
        order: 1
      }
    }
    layer {
      name: "conv17_2_mbox_conf_flat"
      type: "Flatten"
      bottom: "conv17_2_mbox_conf_perm"
      top: "conv17_2_mbox_conf_flat"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "conv17_2_mbox_priorbox"
      type: "PriorBox"
      bottom: "conv17_2"
      bottom: "data"
      top: "conv17_2_mbox_priorbox"
      prior_box_param {
        min_size: 285.0
        max_size: 300.0
        aspect_ratio: 2.0
        aspect_ratio: 3.0
        flip: true
        clip: false
        variance: 0.1
        variance: 0.1
        variance: 0.2
        variance: 0.2
        offset: 0.5
      }
    }
    layer {
      name: "mbox_loc"
      type: "Concat"
      bottom: "conv11_mbox_loc_flat"
      bottom: "conv13_mbox_loc_flat"
      bottom: "conv14_2_mbox_loc_flat"
      bottom: "conv15_2_mbox_loc_flat"
      bottom: "conv16_2_mbox_loc_flat"
      bottom: "conv17_2_mbox_loc_flat"
      top: "mbox_loc"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "mbox_conf"
      type: "Concat"
      bottom: "conv11_mbox_conf_flat"
      bottom: "conv13_mbox_conf_flat"
      bottom: "conv14_2_mbox_conf_flat"
      bottom: "conv15_2_mbox_conf_flat"
      bottom: "conv16_2_mbox_conf_flat"
      bottom: "conv17_2_mbox_conf_flat"
      top: "mbox_conf"
      concat_param {
        axis: 1
      }
    }
    layer {
      name: "mbox_priorbox"
      type: "Concat"
      bottom: "conv11_mbox_priorbox"
      bottom: "conv13_mbox_priorbox"
      bottom: "conv14_2_mbox_priorbox"
      bottom: "conv15_2_mbox_priorbox"
      bottom: "conv16_2_mbox_priorbox"
      bottom: "conv17_2_mbox_priorbox"
      top: "mbox_priorbox"
      concat_param {
        axis: 2
      }
    }
    layer {
      name: "mbox_conf_reshape"
      type: "Reshape"
      bottom: "mbox_conf"
      top: "mbox_conf_reshape"
      reshape_param {
        shape {
          dim: 0
          dim: -1
          dim: 21
        }
      }
    }
    layer {
      name: "mbox_conf_softmax"
      type: "Softmax"
      bottom: "mbox_conf_reshape"
      top: "mbox_conf_softmax"
      softmax_param {
        axis: 2
      }
    }
    layer {
      name: "mbox_conf_flatten"
      type: "Flatten"
      bottom: "mbox_conf_softmax"
      top: "mbox_conf_flatten"
      flatten_param {
        axis: 1
      }
    }
    layer {
      name: "detection_out"
      type: "DetectionOutput"
      bottom: "mbox_loc"
      bottom: "mbox_conf_flatten"
      bottom: "mbox_priorbox"
      top: "detection_out"
      include {
        phase: TEST
      }
      detection_output_param {
        num_classes: 21
        share_location: true
        background_label_id: 0
        nms_param {
          nms_threshold: 0.45
          top_k: 100
        }
        code_type: CENTER_SIZE
        keep_top_k: 100
        confidence_threshold: 0.25
      }
    }
    

    4.模型下载

    MobileNetSSD_deploy.caffemodel: https://share.weiyun.com/Wi04sqO7

    Talk is cheap. Show me the code
  • 相关阅读:
    初识反射
    eclipse简单使用
    常见的原生javascript DOM操作
    你知道CSS实现水平垂直居中的第10种方式吗?
    localStorage 存满了怎么办?
    localStorage使用总结
    js中利用cookie实现记住密码功能
    利用PHP将图片转换成base64编码的实现方法
    php获得可靠的精准的当前时间 ( 通过授时服务器 )
    校正PHP服务器时间不准的问题
  • 原文地址:https://www.cnblogs.com/lx17746071609/p/15089834.html
Copyright © 2011-2022 走看看