1085 Perfect Sequence (25 分)
Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤105) is the number of integers in the sequence, and p (≤109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
第一种方法:
用max记录当前的最长序列长度,因为是要找出最大长度,因此对于每个i,只需要让j从i + max开始。
1 #include <iostream> 2 #include <vector> 3 #include <algorithm> 4 using namespace std; 5 6 vector<int> v; 7 8 int main() 9 { 10 int N, i, j; 11 long p; 12 cin >> N >> p; 13 v.resize(N); 14 for (i = 0; i < N; i++) cin >> v[i]; 15 sort(v.begin(), v.end()); 16 int t, max = 0; 17 for (i = 0; i < N; i++) 18 { 19 for (j = i + max; j < N && v[j] <= v[i] * p; j++); 20 if (j - i > max) max = j - i; 21 } 22 cout << max; 23 return 0; 24 }
关于lower_bound()和upper_bound()的使用:
在从小到大的排序好的数组中:
(lower_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
upper_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
来源:CSDN
原文:https://blog.csdn.net/qq_40160605/article/details/80150252 )
#include <iostream> #include <vector> #include <algorithm> using namespace std; vector<int> v; int main() { int N, i, j; long p; cin >> N >> p; v.resize(N); for (i = 0; i < N; i++) cin >> v[i]; sort(v.begin(), v.end()); int t, max = 0; for (i = 0; i < N; i++) { t = upper_bound(v.begin() + i, v.end(), v[i] * p) - (v.begin() + i); if (t > max) max = t; } cout << max; return 0; }
参考:
https://www.liuchuo.net/archives/1908