zoukankan      html  css  js  c++  java
  • POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem?

    id=1273

    Drainage Ditches
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 55235   Accepted: 21104

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

    Source




    n条边。m个点,1是源点。m是汇点,给出各有向边容量。求最大流。


    #include<cstdio>
    #include<iostream>
    #include<cstdlib>
    #include<algorithm>
    #include<ctime>
    #include<cctype>
    #include<cmath>
    #include<string>
    #include<cstring>
    #include<stack>
    #include<queue>
    #include<list>
    #include<vector>
    #include<map>
    #include<set>
    #define sqr(x) ((x)*(x))
    #define LL long long
    #define itn int
    #define INF 0x3f3f3f3f
    #define PI 3.1415926535897932384626
    #define eps 1e-10
    #define maxm 207<<2
    #define maxn 207
    
    using namespace std;
    
    int fir[maxn],d[maxn];
    int u[maxm],v[maxm],cap[maxm],flow[maxm],rev[maxm],nex[maxm];
    int e_max;
    int q[maxm];
    int p[maxn];
    int n,m;
    
    int main()
    {
        #ifndef ONLINE_JUDGE
            freopen("/home/fcbruce/文档/code/t","r",stdin);
        #endif // ONLINE_JUDGE
    
        while (~scanf("%d %d",&n,&m))
        {
            e_max=0;
            memset(fir,-1,sizeof fir);
            for (int i=0;i<n;i++)
            {
                int e=e_max++;
                scanf("%d %d %d",u+e,v+e,cap+e);
                nex[e]=fir[u[e]];fir[u[e]]=e;rev[e]=e+1;
                e=e_max++;
                u[e]=v[e-1];v[e]=u[e-1];cap[e]=0;
                nex[e]=fir[u[e]];fir[u[e]]=e;rev[e]=e-1;
            }//建图
    
            int s=1,t=m,total_flow=0;
            memset(flow,0,sizeof flow);
    
            for (;;)
            {
                int f,r;
                memset(d,0,sizeof d);
                d[s]=INF;
                q[f=r=0]=s;
                while (f<=r)
                {
                    int x=q[f++];
                    for (int e=fir[x];~e;e=nex[e])
                    {
                        if (!d[v[e]] && cap[e]>flow[e])
                        {
                            d[v[e]]=min(d[u[e]],cap[e]-flow[e]);
                            p[v[e]]=e;
                            q[++r]=v[e];
                        }
                    }
                }//BFS找增广路
    
                if (d[t]==0)    break;//流量为0,无残量
                
                //更新路径上的流量
                for (int e=p[t];;e=p[u[e]])
                {
                    flow[e]+=d[t];
                    flow[rev[e]]-=d[t];
                    if (u[e]==s)    break;
                }
    
                total_flow+=d[t];
            }
    
            printf("%d
    ",total_flow);
        }
    
    
        return 0;
    }
    


  • 相关阅读:
    位运算符设置权限
    urlencode、urldecode、rawurlencode、rawurldecod
    二分查找法的mid值 整数溢出问题
    GIT 常用命令
    nginx配置反向代理转发
    PHP实现无限极分类
    PHP面试题目整理(持续更新)
    去除input的默认样式
    git 常用指令
    数组去重
  • 原文地址:https://www.cnblogs.com/lxjshuju/p/6763952.html
Copyright © 2011-2022 走看看