zoukankan      html  css  js  c++  java
  • POJ 2479 Maximum sum(双向DP)

    Maximum sum
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 36100   Accepted: 11213

    Description

    Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:
    Your task is to calculate d(A).

    Input

    The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input. 
    Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.

    Output

    Print exactly one line for each test case. The line should contain the integer d(A).

    Sample Input

    1
    
    10
    1 -1 2 2 3 -3 4 -4 5 -5

    Sample Output

    13

    Hint

    In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer. 

    Huge input,scanf is recommended.

    1000ms。50000个数,所以每次处理的时间复杂度不能超过nlogn,否则会超时。所以要让最后扫描一次就能求出答案。

    基本思路就是第一次遍历先定义2个数组,分别记录前i项和(含i)与后n-i+1项和(含i)。
    第二次遍历再定义2个数组。分别记录以i为终点(含i)的最大子段和与以i为起点(含i)的最大子段和。

    第三次遍历再定义2个数组,分别记录第i项(含i)的之前的最大子段和与第i项(含i)的之后的最大子段和。最后遍历一遍数组求出i之前(含i)子段和与i之后(不含i)子段和的最大值就可以。

    #include<stack>
    #include<queue>
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #pragma commment(linker,"/STACK: 102400000 102400000")
    #define lson a,b,l,mid,cur<<1
    #define rson a,b,mid+1,r,cur<<1|1
    using namespace std;
    const double eps=1e-6;
    const int MAXN=50050;
    
    int num[MAXN],n,prev[MAXN],afte[MAXN],ans1[MAXN],ans2[MAXN],fans1[MAXN],fans2[MAXN],sum;
    
    
    int main()
    {
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
    #endif // ONLINE_JUDGE
        int tcase;
        scanf("%d",&tcase);
        while(tcase--)
        {
            scanf("%d",&n);
            memset(prev,0,sizeof(prev));//前i项和(含i)
            memset(afte,0,sizeof(afte));//后n-i+1项和(含i)
            memset(ans1,0,sizeof(ans1));//以i为终点(含i)的最大子段和
            memset(ans2,0,sizeof(ans2));//以i为起点(含i)的最大子段和
            memset(fans1,0,sizeof(fans1));//第i项(含i)的之前的最大子段和
            memset(fans2,0,sizeof(fans2));//第i项(含i)的之后的最大子段和
            sum=0;
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&num[i]);
                prev[i]=prev[i-1]+num[i];
                sum+=num[i];
            }
            if(n==2)
            {
                printf("%d
    ",sum);
                continue;
            }
            for(int i=n;i>=1;i--)
                afte[i]=afte[i+1]+num[i];
            int minn=0;
            for(int i=0;i<n;i++)
            {
                minn=min(prev[i],minn);
                ans1[i+1]=prev[i+1]-minn;
                //printf("%d
    ",ans1[i+1]);
            }
            minn=0;
            for(int i=n+1;i>0;i--)
            {
                minn=min(afte[i],minn);
                ans2[i-1]=afte[i-1]-minn;
                //printf("%d
    ",ans2[i-1]);
            }
            int maxx=-99999999;
            for(int i=1;i<=n;i++)
            {
                maxx=max(maxx,ans1[i]);
                fans1[i]=maxx;
            }
            maxx=-99999999;
            for(int i=n;i>=1;i--)
            {
                maxx=max(maxx,ans2[i]);
                fans2[i]=maxx;
            }
            int ans=-99999999;
            for(int i=1;i<n;i++)
                ans=max(ans,fans1[i]+fans2[i+1]);//题目规定区间不能有交集
            printf("%d
    ",ans);
        }
        return 0;
    }


  • 相关阅读:
    字符编码与解码详解
    【Java反射机制】用反射改进简单工厂模式设计
    数据结构
    根据 中序遍历 和 后序遍历构造树(Presentation)(C++)
    【动态规划】记忆搜索(C++)
    Linux环境下安装中山大学东校区iNode客户端
    webpack前端开发环境搭建
    CSS中line-height继承问题
    MySQL中MyISAM与InnoDB的主要区别对比
    JavaScript中易混淆的DOM属性及方法对比
  • 原文地址:https://www.cnblogs.com/lxjshuju/p/6819445.html
Copyright © 2011-2022 走看看