zoukankan      html  css  js  c++  java
  • HDU 5302(Connect the Graph- 构造)

    Connect the Graph

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 456    Accepted Submission(s): 144
    Special Judge


    Problem Description
    Once there was a special graph. This graph had n vertices and some edges. Each edge was either white or black. There was no edge connecting one vertex and the vertex itself. There was no two edges connecting the same pair of vertices. It is special because the each vertex is connected to at most two black edges and at most two white edges.

    One day, the demon broke this graph by copying all the vertices and in one copy of the graph, the demon only keeps all the black edges, and in the other copy of the graph, the demon keeps all the white edges. Now people only knows there are w0 vertices which are connected with no white edges, w1 vertices which are connected with 1 white edges, w2 vertices which are connected with 2 white edges, b0 vertices which are connected with no black edges, b1 vertices which are connected with 1 black edges and b2 vertices which are connected with 2 black edges.

    The precious graph should be fixed to guide people, so some people started to fix it. If multiple initial states satisfy the restriction described above, print any of them.
     

    Input
    The first line of the input is a single integer T (T700), indicating the number of testcases.

    Each of the following T lines contains w0,w1,w2,b0,b1,b2. It is guaranteed that 1w0,w1,w2,b0,b1,b22000 and b0+b1+b2=w0+w1+w2.

    It is also guaranteed that the sum of all the numbers in the input file is less than 300000.
     

    Output
    For each testcase, if there is no available solution, print 1. Otherwise, print m in the first line, indicating the total number of edges. Each of the next m lines contains three integers x,y,t, which means there is an edge colored t connecting vertices x and y. t=0 means this edge white, and t=1 means this edge is black. Please be aware that this graph has no self-loop and no multiple edges. Please make sure that 1x,yb0+b1+b2.
     

    Sample Input
    2 1 1 1 1 1 1 1 2 2 1 2 2
     

    Sample Output
    -1 6 1 5 0 4 5 0 2 4 0 1 4 1 1 3 1 2 3 1
     

    Author
    XJZX
     

    Source
     

    Recommend
    wange2014   |   We have carefully selected several similar problems for you:  5395 5394 5393 5392 5391 
     

    构造法:

    首先保证度数之和为偶数,即w1=b1=1 ,否则无解

    又w0,w1,w2,b0,b1,b2均为正数 故

    当n=4时,仅仅有1种情况 1 2 1 不是无解

    当n≥4时,先构造2个环分别为白环,黑环

    对于奇数n:

      白环 1 2 3 ... n

      黑环 1 3 5 ... n 2 4 6 ... n-1

    对于偶数n:

      白环 1 2 3 ... n

      黑环 1 3 5 ... n-1 2 n n-2 n-4 ... 4

    此时,对于每一个环而言,构造答案

    1-2-2-...-2-2-1 1-1 1-1 .. 1-1 1-1 0 .. 0





    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<functional>
    #include<iostream>
    #include<cmath>
    #include<cctype>
    #include<ctime>
    using namespace std;
    #define For(i,n) for(int i=1;i<=n;i++)
    #define Fork(i,k,n) for(int i=k;i<=n;i++)
    #define Rep(i,n) for(int i=0;i<n;i++)
    #define ForD(i,n) for(int i=n;i;i--)
    #define RepD(i,n) for(int i=n;i>=0;i--)
    #define Forp(x) for(int p=pre[x];p;p=next[p])
    #define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
    #define Lson (x<<1)
    #define Rson ((x<<1)+1)
    #define MEM(a) memset(a,0,sizeof(a));
    #define MEMI(a) memset(a,127,sizeof(a));
    #define MEMi(a) memset(a,128,sizeof(a));
    #define INF (2139062143)
    #define F (100000007)
    #define MAXD (2000+10)
    #define MAXN (6000+10) 
    typedef long long ll;
    ll mul(ll a,ll b){return (a*b)%F;}
    ll add(ll a,ll b){return (a+b)%F;}
    ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
    void upd(ll &a,ll b){a=(a%F+b%F)%F;}
    int a2[MAXN],a1[MAXN],n;
    void calc(int *a,int n0,int n1,int n2,int p)
    {
    	int i=1;
    	if (n1==0&&n2==0) return; 
    	For(i,n2+1)
    	{
    		printf("%d %d %d
    ",a[i],a[i+1],p);
    	}
    	n1-=2;
    	for(int i=n2+3,j=1;j<=n1;i+=2,j+=2) printf("%d %d %d
    ",a[i],a[i+1],p);
    
    	
    }
    int main()
    {
    //	freopen("C.in","r",stdin);
    //	freopen(".out","w",stdout);
    	
    	int T; cin>>T;
    	while(T--) {
    		int w0,w1,w2,b0,b1,b2;
    		scanf("%d%d%d%d%d%d",&w0,&w1,&w2,&b0,&b1,&b2);
    		n=w0+w1+w2;
    		
    		//特判
    		if ((w1&1)||(b1&1)) { printf("-1
    ");continue;}
    		
    		int m=(w1+2*w2+b1+2*b2)/2;
    		
    		if (n==4) 
    		{
    			puts("4
    1 2 0
    1 3 0
    2 3 1
    3 4 1");  
    			continue;
    		} 
    		else if (n>4) {
    			For(i,n) a1[i]=i;
    			if (n%2==0)
    			{
    				for(int i=1,j=1;i<=n/2;i++,j+=2) a2[i]=j;
    				for(int i=n/2+1,j=2;i<=n;i++,j+=2) a2[i]=j;
    				a2[n+1]=1;
    			}
    			else {
    				for(int i=1,j=1;i<=n/2+1;i++,j+=2) a2[i]=j;
    				a2[n/2+2]=2;
    				for(int i=n/2+3,j=n-1;i<=n;i++,j-=2) a2[i]=j;
    				a2[n+1]=1;
    			}
    			cout<<m<<endl;
    			calc(a1,w0,w1,w2,0);
    			calc(a2,b0,b1,b2,1);
    		}
    				
    		
    	}
    	
    	return 0;
    }
    





  • 相关阅读:
    PyCharm 激活方法
    Android Studio 如何启动自身模拟器来调试(一般人我不告诉他)
    Android 打造一款逼格高的圆形图片
    Android Observer观察模式基础入门
    Android OkHttp3(完美封装)Get异步获取数据、Post异步获取数据、Form表单提交、文件下载
    Kotlin学习资料
    Android 导入外部字体的完美解决方案
    Android 开发者福利Google Developers中国网站发布
    Android 自定义弹出框 EditText获取光标后键盘遮挡,及初始化弹出键盘问题解决
    Android ListView动态设置高度
  • 原文地址:https://www.cnblogs.com/lxjshuju/p/6898174.html
Copyright © 2011-2022 走看看