zoukankan      html  css  js  c++  java
  • HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)

    CRB and Puzzle

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 483    Accepted Submission(s): 198


    Problem Description
    CRB is now playing Jigsaw Puzzle.
    There are  kinds of pieces with infinite supply.
    He can assemble one piece to the right side of the previously assembled one.
    For each kind of pieces, only restricted kinds can be assembled with.
    How many different patterns he can assemble with at most  pieces? (Two patterns  and  are considered different if their lengths are different or there exists an integer  such that -th piece of  is different from corresponding piece of .)
     

    Input
    There are multiple test cases. The first line of input contains an integer , indicating the number of test cases. For each test case:
    The first line contains two integers  denoting the number of kinds of pieces and the maximum number of moves.
    Then  lines follow. -th line is described as following format.

    Here  is the number of kinds which can be assembled to the right of the -th kind. Next  integers represent each of them.
    1 ≤  ≤ 20
    1 ≤  ≤ 50
    1 ≤  ≤ 
    0 ≤  ≤ 
    1 ≤  <  < … <  ≤ N

     

    Output
    For each test case, output a single integer - number of different patterns modulo 2015.
     

    Sample Input
    1 3 2 1 2 1 3 0
     

    Sample Output
    6
    Hint
    possible patterns are ∅, 1, 2, 3, 1→2, 2→3
     

    Author
    KUT(DPRK)

    解题思路:
    DP方程非常easy想到 dp[i][j] = sum(dp[i-1][k] <k,j>连通) 构造矩阵用矩阵高速幂加速就可以。
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <cmath>
    #include <queue>
    #include <set>
    #include <map>
    #include <algorithm>
    #define LL long long
    using namespace std;
    const int MAXN = 55 + 10;
    const int mod = 2015;
    int n, m;
    struct Matrix
    {
        int m[MAXN][MAXN];
        Matrix(){memset(m, 0, sizeof(m));}
        Matrix operator * (const Matrix &b)const
        {
            Matrix res;
            for(int i=1;i<=n+1;i++)
            {
                for(int j=1;j<=n+1;j++)
                {
                    for(int k=1;k<=n+1;k++)
                    {
                        res.m[i][j] = (res.m[i][j] + m[i][k] * b.m[k][j]) % mod;
                    }
                }
            }
            return res;
        }
    };
    Matrix pow_mod(Matrix a, int b)
    {
        Matrix res;
        for(int i=1;i<=n+1;i++) res.m[i][i] = 1;
        while(b)
        {
            if(b & 1) res = res * a;
            a = a * a;
            b >>= 1;
        }
        return res;
    }
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            Matrix a, b;
            scanf("%d%d", &n, &m);
            for(int i=1;i<=n+1;i++) a.m[i][n+1] = 1;
            for(int i=1;i<=n;i++)
            {
                int x, k;scanf("%d", &k);
                for(;k--;)
                {
                    scanf("%d", &x);
                    a.m[i][x] = 1;
                }
            }
            a = pow_mod(a, m);
            int ans = 0;
            for(int i=1;i<=n+1;i++) ans = (ans + a.m[i][n+1]) % mod;
            printf("%d
    ", ans);
        }
        return 0;
    }


     
  • 相关阅读:
    在IIS上发布Web(使用VS2005)
    ASP.NET Web Service应用发布到IIs怎么做
    (转)在 Visual Studio 2010 中创建 ASP.Net Web Service
    matlab函数之diag
    Coursera《machine learning》--(6)逻辑回归
    UFLDL教程(五)之self-taught learning
    UFLDL教程之(三)PCA and Whitening exercise
    matlab的常用快捷键
    matlab函数之bsxfun
    Coursera《machine learning》--(14)数据降维
  • 原文地址:https://www.cnblogs.com/lxjshuju/p/6922509.html
Copyright © 2011-2022 走看看