题目链接
我们能够枚举子集的大小
注意到欧拉函数的性质:
莫比乌斯函数性质:
感谢http://blog.csdn.net/u013368721/article/details/47125353
#include <bits/stdc++.h>
using namespace std;
#define prt(k) cerr<<#k" = "<<k<<endl
typedef long long ll;
typedef long long LL;
const ll inf = 0x3f3f3f3f;
const int mod = 258280327;
int exgcd(int a, int b, int &x, int &y)
{
if (b == 0) {
x = 1; y = 0; return a;
} else {
int d = exgcd(b, a%b, y, x);
y -= a/b * x;
return d;
}
}
int inv(int a)
{
int x, y, b = mod;
exgcd(a, b, x, y);
if (x < 0) x += mod;
return x;
}
const int N = 102333;
int phi[N];
int fac[N], vf[N];
void init()
{
fac[0] = 1;
vf[0] = 1;
for (int i=1;i<N;i++) {
phi[i] = i;
fac[i] = (LL) fac[i - 1] * i % mod;
vf[i] = inv(fac[i]);
}
for (int i=2;i<N;i++) if (phi[i]==i) {
for (int j=i;j < N; j+=i)
phi[j] = phi[j] / i * (i - 1);
}
}
int C(int n, int m)
{
return (LL) fac[n] * vf[m] % mod * vf[n - m] % mod;
}
int cnt[N];
int n;
int id[N];
bool cmp(int a, int b)
{
return cnt[a] > cnt[b];
}
// cnt[i] : i 的倍数有多少个
void solve()
{
int ans1 = 0, ans2 = 0;
for (int i=1;i<N;i++) {
int tmp = 0;
for (int j=1;j<N && cnt[id[j]]>=i;j++) {
int idx = id[j];
int t = (LL) C(cnt[idx],i) * phi[idx] % mod;
tmp = (tmp + t) % mod;
}
ans2 = (ans2 + (LL) i * tmp % mod) % mod;
tmp = (LL) tmp * fac[i] % mod * fac[n-i+1] % mod;
ans1 = (ans1 + tmp) % mod;
}
if (ans1 > ans2) printf("Mr. Zstu %d
", ans1);
else {if (ans1 < ans2)
printf("Mr. Hdu %d
", ans2);
else
printf("Equal %d
", ans1);
}
}
int main()
{
init();
while (scanf("%d", &n)==1) {
memset(cnt, 0 ,sizeof cnt);
for (int i=0;i<n;i++) {
int x; scanf("%d", &x);
cnt[x] ++;
}
for (int i=1;i<N;i++) {
id[i] = i;
for (int j=i+i;j<N;j+=i) {
cnt[i] += cnt[j];
}
}
sort(id+1, id+N, cmp);
solve();
}
return 0;
}