zoukankan      html  css  js  c++  java
  • 欧拉公式

    欧拉公式(英语:Euler’s formula,又称尤拉公式)是在复分析领域的公式,将三角函数与复数指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,对任意实数 xx,都存在: 

     
    ejx=cosx+jsinxejx=cos⁡x+jsin⁡x


    其中jj是虚数单位。

    由上式,我们可以推导出: 

     
    sinϕ=12j(ejϕejϕ)sin⁡ϕ=12j(ejϕ−e−jϕ)


     
    cosϕ=12(ejϕ+ejϕ)cos⁡ϕ=12(ejϕ+e−jϕ)

    证明:

    有许多方式可以证明欧拉公式,这里仅用泰勒级数进行证明,其他方式可以参考Wiki欧拉公式 
    这里写图片描述


    在知乎上看到了Heinrich写的一篇关于傅里叶变换的文章,让我茅塞顿开,惊叹数学的美丽和神奇,文章中介绍了复数的意义,我觉得讲的很好,故记录下来:

    虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1的平方根,可是它真正的意义是什么呢? 
    这里写图片描述 
    这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。

    我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。 
    这里写图片描述

    我们就求同一坐标系A一点旋转B角度到A'后A'的坐标是多少吧。先设A(x,y),当然也可以表示为rxexp(ja),r表示A到坐标原点O的距离,exp是以自然常数e为底的指数函数,a是角度,如下图,x=rcos(a),y=rsin(a),只是这里引入了复数,跟原先的坐标系有区别。A'就表示为rxexp(j(a+B)),x'=rcos(a+B),y'=rsin(a+B)。怎么用x,y,B表示A'就不多说了。自己写一下才会了解。

    那么对于坐标系旋转的类似问题,你是不是也理解了呢。

    怎么理解复数和欧拉公式的好处
  • 相关阅读:
    Ch’s gift HDU
    String HDU
    Rikka with String HDU
    DNA repair HDU
    Ring HDU
    A Secret HDU
    看详细的tomcat报错信息
    linux tomcat服务器优化配置
    linux常用命令
    关于Context []startup failed due to previous errors有效解决方式
  • 原文地址:https://www.cnblogs.com/ly0019/p/9316767.html
Copyright © 2011-2022 走看看