zoukankan      html  css  js  c++  java
  • 关于反常积分收敛的专题讨论

    $f命题:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,若$lim limits_{x o egin{array}{*{20}{c}} {{ m{ + }}infty } end{array}} fleft( x ight)$存在,则$lim limits_{x o egin{array}{*{20}{c}} {{ m{ + }}infty } end{array}} fleft( x ight) = 0$

    1

    $f命题:$设$fleft( x ight) in {C^1}left[ {a, + infty } ight)$,若$int_a^{ + infty } {fleft( x ight)dx} ,int_a^{ + infty } {f'left( x ight)dx}$均收敛,则$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} fleft( x ight) = 0$

    1

    $f命题:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且${fleft( x ight)}$在$left[ {a,{ m{ + }}infty } ight)$单调,则$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} xfleft( x ight) = 0$,进而$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} fleft( x ight) = 0$

    1

    $f命题:$ 设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且可微函数${fleft( x ight)}$在$left[ {a,{ m{ + }}infty } ight)$单调递减,则$int_a^{ + infty } {xf'left( x ight)dx} $收敛

    1

    $f命题:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且$frac{{fleft( x ight)}}{x}$在${left[ {a, + infty } ight)}$上单调递减,则$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} xfleft( x ight) = 0$

    1

    $f命题:$设$fleft( x ight)$单调且$lim limits_{x o egin{array}{*{20}{c}}
    {{0^ + }}
    end{array}} fleft( x ight) = + infty $,若$int_0^1 {fleft( x ight)dx} $收敛,则$lim limits_{x o egin{array}{*{20}{c}}
    {{0^ + }}
    end{array}} xfleft( x ight) = 0$

    1

    $f命题:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且$xfleft( x ight)$在${left[ {a, + infty } ight)}$上单调递减,则$lim limits_{x oegin{array}{*{20}{c}} { + infty }end{array}} xfleft( x ight)ln x = 0$

    1

    $f命题:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且$fleft( x ight)$在${left[ {a, + infty } ight)}$上一致连续,则$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} fleft( x ight) = 0$

    1   2

    $f命题:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且$fleft( x ight)$在${left[ {a, + infty } ight)}$上可导且导函数有界,则$lim limits_{x o egin{array}{*{20}{c}}
    { + infty }
    end{array}} fleft( x ight) = 0$

    $f命题:$设$int_a^{ + infty } {fleft( x ight)dx} $绝对收敛,且$fleft( x ight)$在${left[ {a, + infty } ight)}$上可导且导函数有界,则$lim limits_{x o egin{array}{*{20}{c}}
    { + infty }
    end{array}} fleft( x ight) = 0$

    1

    $f命题:$设$fleft( x ight)$在${left[ {a, + infty } ight)}$上可导且导函数有界,若$ int_a^{ + infty } {{f^2}left( x ight)dx} < + infty $,则$lim limits_{x o egin{array}{*{20}{c}}
    { + infty }
    end{array}} fleft( x ight) = 0$

    $f命题:$设$p ge 1,fleft( x ight) in {C^1}left( { - infty , + infty } ight)$,且[int_{ - infty }^{ + infty } {{{left| {fleft( x ight)} ight|}^p}dx} < + infty ,int_{ - infty }^{ + infty } {{{left| {f'left( x ight)} ight|}^p}dx} < + infty ]
    证明:$lim limits_{x o egin{array}{*{20}{c}}infty end{array}} fleft( x ight) = 0$,且$${left| {fleft( x ight)} ight|^p} le frac{{p - 1}}{2}int_{ - infty }^{ + infty } {{{left| {fleft( t ight)} ight|}^p}dt} + frac{1}{2}int_{ - infty }^{ + infty } {{{left| {f'left( t ight)} ight|}^p}dt}$$

    1

    $f命题:$设$fleft( x ight) in Cleft[ {a, + infty } ight)$,且$int_a^{ + infty } {fleft( x ight)dx} $收敛,则存在数列$left{ {{x_n}} ight} subset left[ {a, + infty } ight)$,使得$lim limits_{n oinfty } {x_n} = + infty ,lim limits_{n o infty } fleft( {{x_n}} ight) = 0$

    1

    $f命题:$设$int_a^{{ m{ + }}infty } {fleft( x ight)dx} $绝对收敛,且$lim limits_{x o egin{array}{*{20}{c}}{{ m{ + }}infty }end{array}} fleft( x ight) = 0$,则$int_a^{{ m{ + }}infty } {{f^2}left( x ight)dx} $收敛 

    1

    $f命题:$设$fleft( x ight)$在$left[ {0, + infty } ight)$上可微,$f'left( x ight)$在$left[ {0, + infty } ight)$上单调递增且无上界,则$int_0^{ + infty } {frac{1}{{1 + {f^2}left( x ight)}}dx} $收敛

    1

    $f命题:$设$fleft( x ight) in {C^1}left[ {0, + infty } ight),fleft( 0 ight) > 0,f'left( x ight) geqslant 0,int_0^{ + infty } {frac{1}{{fleft( x ight) + f'left( x ight)}}dx}  <  + infty $,证明:$int_0^{ + infty } {frac{1}{{fleft( x ight)}}dx}  <  + infty $

    1

    $f命题:$设正值函数$fleft( x ight)$在$left[ {1, + infty } ight)$上二阶连续可微,且$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} f''left( x ight) = + infty $,则$int_1^{ + infty } {frac{1}{{fleft( x ight)}}dx} $收敛

    1

    $f命题:$

    附录

    $f(Dirichlet判别法)$设$int_a^A {fleft( x ight)dx} $在$left[ {a, + infty } ight)$上有界,且$g(x)$在$left[ {a, + infty } ight)$上单调趋于$0$,则$int_a^{ + infty } {fleft( x ight)gleft( x ight)dx} $收敛

    1

    $f(Abel判别法)$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,且$g(x)$在$left[ {a, + infty } ight)$上单调有界,则$int_a^{ + infty } {fleft( x ight)gleft( x ight)dx} $收敛

    1

     

     




     

     



     关于反常积分收敛专题的练习题

  • 相关阅读:
    jquery 序列化form表单
    nginx for windows 安装
    nodejs idea 创建项目 (一)
    spring 配置 shiro rememberMe
    idea 2018 解决 双击shift 弹出 search everywhere 搜索框的方法
    redis 在windows 集群
    spring IOC控制反转和DI依赖注入
    redis 的安装
    shiro 通过jdbc连接数据库
    handlebars的用法
  • 原文地址:https://www.cnblogs.com/ly142857/p/3664523.html
Copyright © 2011-2022 走看看