zoukankan      html  css  js  c++  java
  • 关于矩阵的秩的专题讨论

    $f命题:$设$f(x),g(x) in F[x],A in {F^{n imes n}}$,且$(f(x),g(x))=1$,则$$r(f(A))+r(g(A))=n+r(f(A)g(A))$$

    1

    $f命题:$设$Ain P^{n imes m},Bin P^{n imes s},Cin P^{m imes t},Din P^{s imes t}$,且$r(B)=s$,$AC+BD=0$,则$rleft( {egin{array}{*{20}{c}}C\Dend{array}} ight) = t Longleftrightarrow rleft( C ight) = t$

    1   2

    $f命题:$设$n$阶矩阵$A$的特征多项式满足[fleft( lambda   ight) = gleft( lambda   ight)hleft( lambda   ight),left( {gleft( lambda   ight),hleft( lambda   ight)} ight) = 1]证明:$rleft( {gleft( A ight)} ight) = deg hleft( lambda   ight),且rleft( {hleft( A ight)} ight) = deg gleft( lambda   ight)$

    1

    $f命题:$设$A,B_{i}in M_{n}(F),rank(A)<n$,且$A=B_{1}B_{2}cdots B_{k},B_{i}^{2}=B_{i},i=1,2,cdots,k$,则$$rank(E-A)leq k(n-rank(A))$$

    1

    $f命题:$设$A in {M_{m imes n}}left( F ight),B in {M_{n imes s}}left( F ight)$,且$W = left{ {BX in {F^s}left| {ABX = 0} ight.} ight}$,则$dim W = rleft( B ight) - rleft( {AB} ight)$

    1

    $f命题:$设$A in {F^{m imes n}},B in {F^{p imes n}}$,令$S = left{ {Ax|Bx = 0} ight}$,则$S$作为${F^m}$的子空间的维数为$rleft( {egin{array}{*{20}{c}}A\Bend{array}} ight) - rleft( B ight)$

    1

    $f命题:$设$sigma  in Lleft( V ight)$,$W$为$V$的一个有限维子空间,则[dim sigma left( W ight) = dim left( {Kerleft( sigma   ight) cap W} ight) = dim W]

    1

    $f命题:$设实二次型$fleft( {{x_1}, cdots ,{x_n}} ight) = sumlimits_{i = 1}^n {{{left( {{a_{i1}}{x_1} + cdots + {a_{in}}{x_n}} ight)}^2}} $,证明二次型的秩等于$A = {left( {{a_{ij}}} ight)_{n imes n}}$的秩 

    1

    $f命题:$设$A$为秩为$s$的$n$阶实对称阵,且$x'Ax e 0,forall x in {R^n}$,记$B = A - {left( {x'Ax} ight)^{ - 1}}Axx'A$,证明:秩$B=s-1$

    1

    $f命题:$设$f$为数域$F$上$n$维线性空间$V$上的一个双线性函数,则${L_f}:alpha   o {alpha _L}$是$V$到${V^*}$(对偶空间)一个线性映射,其中${alpha _L}:eta   o fleft( {alpha ,eta } ight),forall eta  in V$,则$dim left( {{mathop{ m Im} olimits} {L_f}} ight)=f$的秩($f$的度量矩阵的秩)

    1

    $f命题:$

    附录1

    $f命题1:$设$A in {M_{m imes n}}left( F ight),B in {M_{n imes p}}left( F ight)$,则$rleft( {AB} ight) le min left{ {rleft( A ight),rleft( B ight)} ight}$

     

    $f命题2:$设$A in {M_{m imes n}}left( F ight)$,则$rleft( A ight) le m$且$rleft( A ight) le n$

     

    $f命题3:$$A in {M_{m imes n}}left( F ight)$,且$P,Q$为可逆阵,则$rleft( A ight) = rleft( {PA} ight) = rleft( {AQ} ight) = rleft( {PAQ} ight)$

     

    $f命题4:$$rleft( {egin{array}{*{20}{c}}A&0\0&Bend{array}} ight) = rleft( A ight) + rleft( B ight){ m{ }},{ m{ }}rleft( {egin{array}{*{20}{c}}A&C\0&Bend{array}} ight) ge rleft( A ight) + rleft( B ight)$

    1

    $f命题5:$设$A,B in {M_{m imes n}}left( F ight)$,则$rleft( {A + B} ight) le rleft( A ight) + rleft( B ight)$

    1   2

    $f命题6:$设$A in {M_{m imes n}}left( F ight),B in {M_{n imes p}}left( F ight)$,若$AB = 0$,则$rleft( A ight) + rleft( B ight) le n$ 

    1   2   3

    $f命题7:$$rleft( {AB + A + B} ight) le rleft( A ight) + rleft( B ight)$ 

    1   2   3

    $f命题8:$设$AB = BA$,则$rleft( {A,B} ight) le rleft( A ight) + rleft( B ight) - rleft( {AB} ight)$

    1

    $f命题9:$$f(Frobenius公式)$$rleft( {ABC} ight) ge rleft( {AB} ight) + rleft( {BC} ight) - rleft( B ight)$

    1

    $f命题10:$$f(Sylvester公式)$设$A in {M_{m imes n}}left( F ight),B in {M_{n imes p}}left( F ight)$,则$rleft( {AB} ight) geqslant rleft( A ight) + rleft( B ight) - n$

    1   2

    $f命题11:$$f(秩降阶公式)$设$C in {M_{m imes n}}left( F ight),D in {M_{n imes m}}left( F ight),m = rleft( A ight) ge rleft( B ight) = n$,且$A,B$可逆,则[rleft( {A - D{B^{ - 1}}C} ight) = m - n + rleft( {B - C{A^{ - 1}}D} ight)] 

    1

    $f命题12:$$f(幂等阵与秩)$${A^2} = A Leftrightarrow rleft( A ight) + rleft( {A - E} ight) = n$ 

    1

    $f命题13:$$rleft( {{A^T}A} ight) = rleft( {A{A^T}} ight) = rleft( A ight) = rleft( {{A^T}} ight)$

    1

    $f命题14:$设$rleft( {AB} ight) = rleft( B ight)$,则$rleft( {ABC} ight) = rleft( {BC} ight)$

    1

    $f命题15:$设$A$为$n$阶方阵,且$r(A)=r(A^2)$,则对任意的自然数$k$都有$r(A^k)=r(A)$ 

    1

    $f命题16:$设$A$为$n$阶可逆阵,则${A^T}{ m{ = }} - A$当且仅当$rleft( {egin{array}{*{20}{c}}A&alpha \{{alpha ^T}}&0end{array}} ight) = rleft( A ight),forall alpha in {F^n}$

    1

    $f命题17:$设$rleft( A ight) = rleft( {A,b} ight)$,则$rleft( {egin{array}{*{20}{c}}A&b\{ - {b^T}}&0end{array}} ight) = rleft( A ight)$,其中$A$为$n$阶反对称阵,$b$为$n$维列向量                     

    1   2

    $f命题18:$设$A$是数域$F$上的$n$阶方阵,证明:对任意的正整数$k$,有$rankleft( {{A^{n + k}}} ight) = rankleft( {{A^n}} ight)$

    1

     

  • 相关阅读:
    初识软件工程
    00.JS前言
    01.JS语法规范、变量与常量
    02.JS数据类型与数据类型转换
    03.JS运算符
    04.JS逻辑结构
    05.JS函数
    06.JS对象-1
    08.JS单词整理
    00.ES6简介
  • 原文地址:https://www.cnblogs.com/ly142857/p/3672925.html
Copyright © 2011-2022 走看看