$f命题:$设$fleft( x ight) in {C^1}left[ {0,1} ight]$,则存在$xi in (0,1)$,使得$int_0^1 {fleft( x ight)dx} = fleft( 0 ight) + frac{1}{2}f'left( xi ight)$
1
$f命题:$设$fleft( x ight) in Cleft[ {0,pi } ight],int_0^pi {fleft( x ight)dx} = 0,int_0^pi {fleft( x ight)cos xdx} = 0$,则存在${xi _1},{xi _2} in left( {0,pi } ight)$,使得$fleft( {{xi _1}} ight) = fleft( {{xi _2}} ight) = 0$
1
$f命题:$设$fleft( x ight) in Cleft[ {0,1} ight],fleft( x ight) > 0$,则对于$n in {N_ + }$,存在${xi _n}$,使得[frac{1}{n}int_0^1 {fleft( x ight)dx} = int_0^{{xi _n}} {fleft( x ight)dx} + int_{1 - {xi _n}}^1 {fleft( x ight)dx} ][mathop {lim }limits_{n o infty } n{xi _n} = int_0^1 {fleft( x ight)dx} /[fleft( 0 ight) + fleft( 1 ight)]]
1
$f命题:$设$fleft( x ight) in {C^1}left[ {0,1} ight],f'left( 0 ight) e 0$,则对$int_0^x {fleft( t ight)dt} = fleft( {xi left( x ight)} ight)x,0 < x < 1$中的$xi(x)$,有$xi left( x ight)/x o 1/2left( {x o {0^ + }} ight)$
1
$f命题:$设$f(x)$在$[a,b]$上可积,证明:$$ lim limits_{n o infty } int_a^b {fleft( x ight)left| {sin nx} ight|dx} = frac{2}{pi }int_a^b {fleft( x ight)dx} $$
1
$f命题:$设$f(x)$在$[-1,1]$上二阶连续可微,则存在$xi in(-1,1)$,使得[int_{ - 1}^1 {xfleft( x ight)dx} = frac{2}{3}f'left( xi ight) + frac{1}{3}xi f''left( xi ight)]
1
$f命题:$设$phi(x)$是以$T$为周期的有界函数,且$frac{1}{T}int_0^T {varphi left( x ight)dx} = C$,证明:[mathop {lim }limits_{n o infty } nint_n^{ + infty } {frac{{varphi left( t ight)}}{{{t^2}}}dt} = C]
1
$f命题:$