$f命题:$设$fleft( x ight)$在$left[ {0,1} ight]$上二次可微,且$fleft( 0 ight) = fleft( 1 ight) = f'left( 0 ight) = f'left( 1 ight) = 0$,则存在$xi in left( {0,1} ight)$,使得$f''left( xi ight){ m{ = }}fleft( xi ight)$
$f命题:$设$fleft( x ight)$在$left[ {0,1} ight]$上连续,在$left( {0,1} ight)$上可微,且$fleft( 0 ight) = 0,fleft( 1 ight) = frac{1}{2}$,则存在$xi ,eta in left( {0,1} ight)$,使得$f'left( xi ight){ m{ + }}f'left( eta ight){ m{ = }}xi { m{ + }}eta $
$f命题:$设$f(x)$在$[0,1]$上可导,且$fleft( 0 ight) = 0,fleft( 1 ight) = 1$,证明:存在$xi,eta in(0,1)$,使得$frac{1}{{f'left( xi ight)}} + frac{1}{{f'left( eta ight)}} = 2$
$f命题:$设$fleft( x ight)$在$left[ {a,b} ight]$上连续且在$(a,b)$上可微,若$fleft( a ight) = 0,fleft( x ight) e 0,forall x in left( {a,b} ight)$,则对任意的自然数$m,n$,存在$xi ,eta in left( {a,b} ight)$,使得$frac{{nf'left( xi ight)}}{{fleft( xi ight)}} = frac{{mf'left( eta ight)}}{{fleft( eta ight)}}$
$f命题:$设设$fleft( x ight)$在$left[ {0,1} ight]$上连续,在$(0,1)$上可微,且$f(0)=0,f(1)=1$,则存在不同的点$xi ,eta in left( {0,1} ight)$,使得$f'left( xi ight)f'left( eta ight) = 1$
$f命题:$设$f(x),g(x)$在$left[ {a,b} ight]$上连续,在$(a,b)$内具有二阶导数且存在相等最大值,$fleft( a ight) = gleft( a ight),fleft( b ight) = gleft( b ight)$,证明:存在$xi in(a,b)$,使得$f''left( xi ight) = g''left( xi ight)$
$f命题:$设$fleft( x ight)$在$left( {a, + infty } ight)$可导且导函数有界,则存在常数$c,xi $,使得当$x ge xi $时,有$fleft( x ight) < cx$
$f命题:$设$f(x)$在$left[ {a,b} ight]$上二次可微,若存在$c in left( {a,b} ight)$,使得$fleft( c ight) > 0$,且$fleft( a ight) = fleft( b ight) = 0$,则存在$xi in left( {a,b} ight)$,使得$f''left( xi ight) < 0$
$f命题:$$(1)$设$fleft( x ight)$在$left( {a, + infty } ight)$上可微,且$lim limits_{x o egin{array}{*{20}{c}}{{a^ + }}end{array}} fleft( x ight) = lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} fleft( x ight)$,则存在$xi in left( {a, + infty } ight)$,使得$f'left( xi ight) = 0$
$(2)$若$fleft( x ight)$在$left( {a, + infty } ight)$上二次可微,则存在$eta in left( {a, + infty } ight)$,使得$f''left( eta ight) = 0$
$f命题:$设$f(x)$是$left[ {a, + infty } ight)$上有界的可微函数,且$left| {f'left( x ight)} ight|$单调,则$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} xf'left( x ight) = 0$
$f命题:$设$f(x)$在$[a,b]$上连续,在$(a,b)$上可微,且满足条件[fleft( a ight)fleft( b ight) > 0,fleft( a ight)fleft( {frac{{a + b}}{2}} ight) < 0]证明:对每个实数$k$,存在$xi in left( {a,b} ight)$,使得$f'left( xi ight) - kfleft( xi ight) = 0$
$f命题:$设$fleft( x ight) in {C^1}left[ {a,b} ight]$,且存在$c in left( {a,b} ight)$,使得$f'left( c ight) = 0$,则存在$xi in left( {a,b} ight)$,使得$f'left( xi ight) = frac{{fleft( xi ight) - fleft( a ight)}}{{b - a}}$
$f命题:$设$f(x)$在$[a,b]$上可导,且$f'left( a ight) = f'left( b ight)$,则存在$xi in left( {a,b} ight)$,使得$f'left( xi ight)left( {xi - a} ight) = fleft( xi ight) - fleft( a ight)$
$f命题:$设$f(x),g(x)$为$[a,b]$上的正值连续函数,则存在$xi in (a,b)$,使得$frac{{fleft( xi ight)}}{{int_a^xi {fleft( x ight)dx} }} - frac{{gleft( xi ight)}}{{int_xi ^b {gleft( x ight)dx} }} = 1$
$f命题:$设$a>1$,函数$f:left( {0, + infty } ight) o left( {0, + infty } ight)$可微,证明:存在趋于无穷的正数列${x_n}$,使得$f'left( {{x_n}} ight) < fleft( {a{x_n}} ight),n = 1,2, cdots $
$f命题:$设$f(x)$在$[-2,2]$上二阶可导,且$left| {fleft( x ight)} ight| leqslant 1left( { - 2 leqslant x leqslant 2} ight)$,[frac{1}{2}{left[ {f'left( 0 ight)} ight]^2} + {f^3}left( 0 ight) > frac{3}{2}]证明:存在${x_0} in left( { - 2,2} ight)$,使得$f''left( {{x_0}} ight) + 3{f^2}left( {{x_0}} ight) = 0$
1
$f命题:$设$f(x)$在$[-2,2]$上二阶可导,且$left| {fleft( x ight)} ight| leqslant 1$,${f^2}left( 0 ight){ ext{ + }}{left( {f'left( 0 ight)} ight)^2}{ ext{ = }}4$,证明:存在$xi in left( { - 2,2} ight)$,使得$f''left( xi ight) + fleft( xi ight) = 0$
$f(03中科院五)$设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,且$fleft( a ight) = 0,fleft( x ight) > 0left( {a < x < b} ight)$,证明:不存在常数$M>0$,使得$$0 leqslant f'left( x ight) leqslant Mfleft( x ight),x in left( {a,b} ight]$$
$f(04华师三)$设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,则存在$xi,eta in(a,b)$,使得$f'left( xi ight) = frac{{{eta ^2}f'left( eta ight)}}{{ab}}$
附录
$f命题:$$f(Gronwall-Bellman不等式微分形式)$设$f(x)$在$left[ {0, + infty } ight)$上可微,$f(0)=0$,且存在$A>0$,使得[left| {f'left( x ight)} ight| le Aleft| {fleft( x ight)} ight|,forall x in left[ {0, + infty } ight)]证明:$fleft( x ight) equiv 0$
$f命题:$设${fleft( x ight)}$在$left[ {a,b} ight]$上连续,在$left( {a,b} ight)$上二次可微,则存在$xi in left( {a,b} ight)$,使得
[fleft( a ight) + fleft( b ight) - 2fleft( {frac{{a + b}}{2}} ight) = frac{{{{left( {b - a} ight)}^2}}}{4}f''left( xi ight)]