$f{命题:}$设$f(x)$在$(a,b)$上连续,则$f(x)$在$(a,b)$上一致连续的充要条件是:$lim limits_{x o egin{array}{*{20}{c}}{{a^ + }}end{array}} fleft( x ight)$与$lim limits_{x o egin{array}{*{20}{c}}{{b^ -}}end{array}} fleft( x ight)$均存在且有限
$f{命题:}$设$f(x)$在$left[ {a, + infty } ight)$上连续,若$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} fleft( x ight)$存在且有限,则$f(x)$在$left[ {a, + infty } ight)$上一致连续
$f{命题:}$设$f(x)$在$left( {a,b} ight)$上可导且导函数有界,则$f(x)$在$left( {a,b} ight)$上一致连续
$f{命题:}$(1)设$f(x)$在$left[ {a, + infty } ight)$上可导,且$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} f'left( x ight) = A $,则$f(x)$在$left[ {a, + infty } ight)$上一致连续
(2)设$f(x)$在$left[ {a, + infty }
ight)$上可导,且$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} f'left( x
ight) ={ + infty }$,则$f(x)$在$left[ {a, + infty }
ight)$上非一致连续
$f{命题:}$设$f(x)$在有限区间$left( {a,b} ight)$上可导,且$lim limits_{x o egin{array}{*{20}{c}}{{a^ + }}end{array}} f'left( x ight)$与$ limlimits_{x o egin{array}{*{20}{c}}{{b^ - }}end{array}} f'left( x ight)$均存在,则$f(x)$在$left( {a,b} ight)$上一致连续
$f{命题:}$设$f(x)$定义在开区间$(a,b)$上,若对任意的$cin (a,b)$都有$lim limits_{x o c} fleft( x ight)$存在,且$lim limits_{x o egin{array}{*{20}{c}}{{a^ + }}end{array}} fleft( x ight)$与$ limlimits_{x o egin{array}{*{20}{c}}{{b^ - }}end{array}} fleft( x ight)$也存在,则$f(x)$在$(a,b)$上有界
$f{命题:}$设$f(x)$在$<a,b>$上一致连续,$forall x in < a,b > ,fleft( x ight) in < c,d > $,且$g(y)$在$<c,d>$上一致连续,则$Fleft( x ight) = gleft( {fleft( x ight)} ight)$在$<a,b>$上一致连续
$f{命题:}$设$f(x)$在$left[ {a, + infty } ight)$上一致连续,$varphi left( x ight)$在$left[ {a, + infty } ight)$上连续,且$lim limits_{x o + infty } left[ {fleft( x ight) - varphi left( x ight)} ight] = 0$,则$varphi left( x ight)$在$left[ {a, + infty } ight)$上一致连续
$f{命题:}$设$f(x)$在$R$上连续,且$lim limits_{x o infty } fleft( x ight)$存在,则
(1)$f(x)$在$R$上有界
(2)$f(x)$在$R$上能取得最大值或最小值
(3)$f(x)$在$R$上一致连续
$f{命题:}$设$f(x)$在$(0,+ infty )$上可导,且$sqrt x f'left( x ight)$在$(0,+ infty )$上有界,则
(1)$f(x)$在$(0,+ infty )$一致连续
(2)$fleft( {{0^ + }} ight) = lim limits_{x o egin{array}{*{20}{c}}{{0^ + }}end{array}} fleft( x ight)$
(3)若将条件“$sqrt x f'left( x ight)$在$(0,+ infty )$上有界”改为“$lim limits_{x o egin{array}{*{20}{c}}{{0^ + }}end{array}} sqrt x f'left( x ight)$和$lim limits_{x o + infty } sqrt x f'left( x ight)$都存在”,试问:还能否推出$f(x)$在$(0,+ infty )$一致连续,如果能请给出证明,否则举出反例
参考答案
$f{命题:}$(1)证明:$fleft( x ight) = sqrt x $在$(0,+ infty )$上一致连续
(2)讨论$fleft( x ight) = sqrt x $在$(0,+ infty )$上是否$f{Lipschitz}$连续,即是否存在常数$L>0$,使得[left| {fleft( x ight) - fleft( y ight)} ight| le Lleft| {x - y} ight|,forall x,y in (0, + infty )]
$f{命题:}$设$fleft( x ight) = {x^alpha }$,证明:当$0 < alpha le 1$时,$f(x)$在$(0,+ infty )$上一致连续;当$alpha >1$时,$f(x)$在$(0,+ infty )$上非一致连续
$f{命题:}$设$f(x)$在$left[ {a, + infty } ight)left( {a > 0} ight)$上满足$f{Lipschitz}$条件,即存在$M>0$,使得对任意的$x,yin left[ {a, + infty } ight) $,有[left| {fleft( x ight) - fleft( y ight)} ight| le Mleft| {x - y} ight|]则$frac{{fleft( x ight)}}{x}$在$left[ {a, + infty } ight)$上一致连续
$f{命题:}$设$f(x)$在有限区间$I$上有定义,则$f(x)$在$I$上一致连续的充要条件是:对任意的$Cauchy$列$left{ {{x_n}} ight} subset I$,$left{ {fleft( {{x_n}} ight)} ight}$也是$Cauchy$列
$f{命题:}$
$f{命题:}$设$f(x)$在$left( { - infty , + infty } ight)$上一致连续,则存在非负实数$A,B$,使得对任意$x in left( { - infty , + infty } ight)$,有$left| {fleft( x ight)} ight| le Aleft| x ight| + B$
参考答案