zoukankan      html  css  js  c++  java
  • 关于连续性的专题讨论

    $f命题:$设$f(x)in C(a,b)$,且在有理点处$(稠密子集上)$取值为$A$,则$fleft( x ight) equiv A$

    1

    $f命题:$设$f(x)in C[a,b]$,且对任意$xin [a,b]$,存在$yin [a,b]$,使得$left| {fleft( y ight)} ight| le frac{1}{2}left| {fleft( x ight)} ight|$,则$f(x)$在$[a,b]$中有零点

    1

    $f命题:$设$fleft( x ight) in Cleft[ {0,1} ight]$,且$fleft( 0 ight) = fleft( 1 ight)$

       (1)证明:存在${x_0} in left[ {0,frac{1}{2}} ight]$,使得$fleft( {{x_0}} ight) = fleft( {{x_0} + frac{1}{2}} ight)$

       (2)试推测:对任何的自然数$n$,是否存在${x_0} in [0,frac{{n - 1}}{n}]$,使得$fleft( {{x_0}} ight) = fleft( {{x_0} + frac{1}{n}} ight)$,并证明你的结论

    1

    $f命题:$设$f(x)$在$x=0$处连续,且$lim limits_{x o egin{array}{*{20}{c}}0end{array}} frac{{fleft( {2x} ight) - fleft( x ight)}}{x} = A$,证明:$f'left( 0 ight) = A$

    1

    $f命题:$设$f(x)$在$left( { - infty , + infty } ight)$上连续,若$lim limits_{x o egin{array}{*{20}{c}}infty end{array}} fleft( x ight) = + infty $,证明:

       (1)$f(x)$在$left( { - infty , + infty } ight)$上有最小值$a$

       (2)若$f(a)>a$,则$f(f(x))$在$left( { - infty , + infty } ight)$上至少两点取到最小值

    $f命题:$设$f(x)$在$[a,b]$上具有介值性,且$(a,b)$内可导,$left| {f'left( x ight)} ight| leqslant k,xin (a,b)$,证明:$f(x)$在$a$处右连续,在$b$处左连续

    1

    $f命题:$

    $(04大连理工)$设$f(x)$在$[a,b]$上连续,对$xin[a,b]$,定义$mleft( x ight) = mathop {inf }limits_{a leqslant t leqslant x} fleft( t ight)$,证明:$m(x)$在$[a,b]$上连续

  • 相关阅读:
    ER模型
    一道人人的笔试题
    关系代数运算
    推荐两个不错的CAD二次开发(.Net)手册
    CAD 致命错误
    CAD二次开发(.NET)之PaletteSet和Palette
    养生
    我看面向对象
    .NET中参数化查询数据库
    自定义按照index和key访问的List
  • 原文地址:https://www.cnblogs.com/ly142857/p/3706615.html
Copyright © 2011-2022 走看看