$f命题:$设$fleft( x ight) in {C^2}left[ {0,1} ight]$,且$fleft( 0 ight) = fleft( 1 ight) = 0$,则$${ m{ }}int_0^1 {left| {f''left( x ight)} ight|dx} ge 4mathop {max}limits_{x in left[ {0,1} ight]} left| {fleft( x ight)} ight|$$
$f命题:$设$fleft( x ight) in {C^2}left[ {0,1} ight]$,$fleft( 0 ight) = fleft( 1 ight) = 0,f'left( 0 ight) = 1,f'left( 1 ight) = 0$,则[int_0^1 {{{left| {f''left( x ight)} ight|}^2}dx} geqslant 4]
$f命题:$设$fleft( x ight) in {C^1}left[ {a,b} ight]$,且$fleft( a ight) = fleft( b ight) = 0$,则$$left| {int_a^b {fleft( x ight)dx} } ight| le frac{{{{left( {b - a} ight)}^2}}}{4}mathop {max}limits_{x in left[ {a,b} ight]} left| {f'left( x ight)} ight|$$
$f命题:$设$fleft( x ight) in {C^2}left[ {a,b} ight]$,且$fleft( a ight) = fleft( b ight) = 0$,则$$left| {int_a^b {fleft( x ight)dx} } ight| le frac{{{{left( {b - a} ight)}^3}}}{{12}}mathop {max}limits_{x in left[ {a,b} ight]} left| {f''left( x ight)} ight|$$
$f命题:$ $f(内插不等式)$设$fleft( x ight) in {C^2}left[ {a,b} ight]$,则$$mathop {max}limits_{x in left[ {a,b} ight]} left| {f'left( x ight)} ight| le int_a^b {left| {f''left( x ight)} ight|dx} + frac{{18}}{{{{left( {b - a} ight)}^2}}}int_a^b {left| {fleft( x ight)} ight|dx} $$
$f命题:$设连续函数$f,g:$$left[ {0,1} ight] o left[ {0,1} ight]$,且$f(x)$单调递增,则$$int_0^1 {fleft( {gleft( x ight)} ight)dx} le int_0^1 {fleft( x ight)dx} + int_0^1 {gleft( x ight)dx} $$
$f命题:$设$fleft( x ight) in {C^1}left[ {a,b} ight]$,且$fleft( a ight) = 0$,则$${int_a^b {{f^2}left( x ight)dx} le frac{{{{left( {b - a} ight)}^2}}}{2}int_a^b {{{left[ {f'left( x ight)} ight]}^2}dx} }$$
$f命题:$设$f'left( x ight) in Cleft[ {a,b} ight],fleft( a ight) = fleft( b ight) = 0$,则[int_a^b {{f^2}left( x ight)dx} le frac{{{{left( {b - a} ight)}^2}}}{4}int_a^b {{{left( {f'left( x ight)} ight)}^2}dx} ]
$f命题:$设$fleft( x ight) in {C^2}left[ { - a,a} ight]$,且$fleft( 0 ight) = 0$,则
[{left( {int_{ - a}^a {fleft( x ight)dx} } ight)^2} le frac{{{a^5}}}{{10}}int_{ - a}^a {{{left[ {f''left( x ight)} ight]}^2}dx} ]
$f命题:$设$f(x)$在$[-1,1]$上可微,$M = mathop {Sup}limits_{x in [ - 1,1]} left| {f'left( x ight)} ight|$,若存在$a in(0,1)$,使得$int_{ - a}^a {fleft( x ight)dx} = 0$,则$$left| {int_{ - 1}^1 {fleft( x ight)dx} } ight| leqslant Mleft( {1 - {a^2}} ight)$$
$f命题:$设$fleft( x ight) in {C^2}left[ { - l,l} ight],fleft( 0 ight) = 0$,则[{left( {int_{ - l}^l {fleft( x ight)dx} } ight)^2} leqslant frac{{{l^5}}}{{10}}int_{ - l}^l {{{left( {f''left( x ight)} ight)}^2}dx} ]
$f命题:$
$f命题:$设$f(x)$在$(a,b)$上可微,且$left| {f'left( x ight)} ight| leqslant M$,则[left| {int_a^b {fleft( x ight)dx} - frac{{b - a}}{2}left( {fleft( a ight) + fleft( b ight)} ight)} ight| leqslant frac{{{{left( {b - a} ight)}^2}M}}{4} - frac{{{{left( {fleft( a ight) - fleft( b ight)} ight)}^2}}}{{4M}}]
$f(03川大三)$设$fleft( x ight) in {C^2}left[ {a,b} ight],fleft( a ight) = fleft( b ight) = 0$,则[left| {frac{{fleft( x ight)}}{{left( {x - a} ight)left( {x - b} ight)}}} ight| leqslant frac{1}{{b - a}}int_a^b {left| {f''left( x ight)} ight|dx} ,forall x in left[ {a,b} ight]]
附录
$f命题:$设$fleft( x ight) in {C^1}left[ {0,1} ight]$,且存在$M > 0$,使得对任意$x in left( {0,1} ight)$,有$left| {f'left( x ight)} ight| le M$,则$$left| {int_0^1 {fleft( x ight)dx} - frac{1}{n}sumlimits_{k = 1}^n {fleft( {frac{k}{n}} ight)} } ight| le frac{M}{n}$$
$f命题:$设非负单调递减函数$f(x)$在$left[ {0,1} ight]$上连续,且$0 < alpha < eta < 1$,证明:$int_0^alpha {fleft( x ight)dx} ge frac{alpha }{eta }int_alpha ^eta {fleft( x ight)dx}$
$f命题:$设$f(x)$在$left[ {a,b} ight]$上可导,且$f'left( x ight)$在$left[ {a,b} ight]$上递减,$f'left( b ight) > 0$,证明:$left| {int_a^b {cos fleft( x ight)dx} } ight| le frac{2}{{f'left( b ight)}}$
$f命题:$设$f(x)$为$left[ { - pi ,pi } ight]$上的凸函数,且$f'left( x ight)$有界,证明:${ m{ }}{a_{2n}} = frac{1}{pi }int_{ - pi }^pi {fleft( x ight)cos 2nxdx} ge 0$
$f命题:$