$f命题2:$任意方阵$A$均可分解为可逆阵$B$与对称阵$C$之积
证明:设$rleft( A
ight) = r$,则存在可逆阵$P,Q$,使得
[A = Pleft( {egin{array}{*{20}{c}}
{{E_r}}&0\
0&0
end{array}}
ight)Q]
从而可知
egin{align*}
A &= Pleft( {egin{array}{*{20}{c}}
{{E_r}}&0\
0&0
end{array}}
ight)Q\&
= P{{Q'}^{ - 1}}Q'left( {egin{array}{*{20}{c}}
{{E_r}}&0\
0&0
end{array}}
ight)Q
end{align*}
取$B = P{{Q'}^{ - 1}}$,$C = Q'left( {egin{array}{*{20}{c}}
{{E_r}}&0\
0&0
end{array}}
ight)Q$,即证