$f命题3:$设$A$实对称正定,$B$实对称半正定,则$trleft( {B{A^{ - 1}}} ight)trleft( A ight) ge trleft( B ight)$
方法一:同时合同对角化
由题可知,存在可逆阵$R$,使得[R'AR = E,R'BR = diagleft( {{lambda _1}, cdots ,{lambda _n}}
ight)]
其中${lambda _i} ge 0,i = 1, cdots ,n$,则
egin{align*}
R'B{A^{ - 1}}{{R'}^{ - 1}}& = R'BR cdot {R^{ - 1}}{A^{ - 1}}{{R'}^{ - 1}}\&
= diagleft( {{lambda _1}, cdots ,{lambda _n}}
ight)
end{align*}
即[trleft( {B{A^{ - 1}}}
ight) = sumlimits_{i = 1}^n {{lambda _i}} ]
从而可知egin{align*}
trleft( B
ight) &= trleft( {diagleft( {{lambda _1}, cdots ,{lambda _n}}
ight)C}
ight)\&
= sumlimits_{j = 1}^n {{lambda _j}{c_j}} le sumlimits_{i = 1}^n {{lambda _i}} cdot sumlimits_{j = 1}^n {{c_j}} \&
= trleft( {B{A^{ - 1}}}
ight) cdot trleft( C
ight)
end{align*}
其中$C = {left( {R'R}
ight)^{ - 1}},{c_j}left( {j = 1, cdots ,n}
ight)$为$C$的对角元;而$trleft( A
ight) = trleft( C
ight)$,故结论成立