zoukankan      html  css  js  c++  java
  • 656

    $f命题3:$设$A$实对称正定,$B$实对称半正定,则$trleft( {B{A^{ - 1}}} ight)trleft( A ight) ge trleft( B ight)$

    方法一:同时合同对角化

    由题可知,存在可逆阵$R$,使得[R'AR = E,R'BR = diagleft( {{lambda _1}, cdots ,{lambda _n}} ight)]
    其中${lambda _i} ge 0,i = 1, cdots ,n$,则
    egin{align*}
    R'B{A^{ - 1}}{{R'}^{ - 1}}& = R'BR cdot {R^{ - 1}}{A^{ - 1}}{{R'}^{ - 1}}\&
    = diagleft( {{lambda _1}, cdots ,{lambda _n}} ight)
    end{align*}
    即[trleft( {B{A^{ - 1}}} ight) = sumlimits_{i = 1}^n {{lambda _i}} ]
    从而可知egin{align*}
    trleft( B ight) &= trleft( {diagleft( {{lambda _1}, cdots ,{lambda _n}} ight)C} ight)\&
    = sumlimits_{j = 1}^n {{lambda _j}{c_j}} le sumlimits_{i = 1}^n {{lambda _i}} cdot sumlimits_{j = 1}^n {{c_j}} \&
    = trleft( {B{A^{ - 1}}} ight) cdot trleft( C ight)
    end{align*}
    其中$C = {left( {R'R} ight)^{ - 1}},{c_j}left( {j = 1, cdots ,n} ight)$为$C$的对角元;而$trleft( A ight) = trleft( C ight)$,故结论成立

  • 相关阅读:
    2020-03-1811:29:37springboot与任务
    2020-03-17 20:18:50springboot整合rabbitmq
    2020.03.17 springboot缓存相关
    前端JS面试
    npm 常用指令
    ES8新特性
    ES7新特性
    ES6新特性
    SpringBoot
    SpringBoot
  • 原文地址:https://www.cnblogs.com/ly758241/p/3706410.html
Copyright © 2011-2022 走看看