zoukankan      html  css  js  c++  java
  • 26566

    $f命题1:$设$fleft( x ight) in {C^1}left( { - infty , + infty } ight)$,令[{f_n}left( x ight) = nleft[ {fleft( {x + frac{1}{n}} ight) - fleft( x ight)} ight]]

    证明:对任意$x in left[ {a,b} ight] subset left( { - infty , + infty } ight)$,有${f_n}left( x ight)$一致收敛于$f'left( x ight)$

    证明:由$fleft( x ight) in {C^1}left( { - infty , + infty } ight)$知,$f'left( x ight) in Cleft[ {a,b}
    ight]$,则

    由$f{Cantor定理}$知,$f'left( x ight)$在$left[ {a,b} ight]$上一致连续,即对任意$varepsilon > 0$,存在$delta > 0$,使得对任意的$x,y in left[ {a,b} ight]$满足$left| {x - y} ight| < delta $时,有[left| {f'left( x ight) - f'left( y ight)} ight| < varepsilon ]

    由微分中值定理知,存在${xi _n} in left( {x,x + frac{1}{n}} ight)$,使得
    [{f_n}left( x ight) = nf'left( {{xi _n}} ight)frac{1}{n} = f'left( {{xi _n}} ight)]
    取$N = frac{1}{delta }$,则当$n > N$时,对任意$x in left[ {a,b} ight]$,有[left| {x - {xi _n}} ight| < delta ]

    从而有[left| {f'left( x ight) - f'left( {{xi _n}} ight)} ight| < varepsilon ]
    所以对任意$varepsilon > 0$,存在$N = frac{1}{delta } > 0$,使得当$n > N$时,对任意$x in left[ {a,b} ight]$,有[left| {f'left( x ight) - {f_n}left( x ight)} ight|{ m{ = }}left| {f'left( x ight) - f'left( {{xi _n}} ight)} ight| < varepsilon ]
    从而由函数列一致收敛的定义即证

    $f注1:$$N$的取值由不等式${left| {x - {xi _n}} ight| < delta }$放缩得到

    $f注2:$由于$f'left( x ight) in Cleft( { - infty , + infty } ight)$,所以[ lim limits_{n o infty } {f_n}left( x ight) = mathop {lim }limits_{n o infty } frac{{fleft( {x + frac{1}{n}} ight) - fleft( x ight)}}{{frac{1}{n}}} = f'left( x ight)]
    即${f_n}left( x ight)$在$left( { - infty , + infty } ight)$上处处收敛于$f'left( x ight)$

  • 相关阅读:
    经典SQL语句大全
    主键,外键,主键表,外间表
    一个不错的shell 脚本教程 入门级
    初窥Linux 之 我最常用的20条命令
    try catch finally 用法
    一个初学者对于MVC架构的理解
    第二次阶段冲刺2(6月1号)
    第二次阶段冲刺1(5月31号)
    学习进度条十三(第14周)
    学习进度条十二(第13周)
  • 原文地址:https://www.cnblogs.com/ly758241/p/3706461.html
Copyright © 2011-2022 走看看