zoukankan      html  css  js  c++  java
  • 9855

    $f命题1:$设$int_a^{ + infty } {fleft( x ight)dx} $收敛,若$lim limits_{x o egin{array}{*{20}{c}} {{ m{ + }}infty } end{array}} fleft( x ight)$存在,则$lim limits_{x o egin{array}{*{20}{c}} {{ m{ + }}infty } end{array}} fleft( x ight) = 0$

    证明:反证法,若$lim limits_{x o egin{array}{*{20}{c}} {{ m{ + }}infty } end{array}} fleft( x ight) = l e 0$,则不妨设$l > 0$

    从而 由极限的保号性知,存在$M > 0$,当$x>M$时,有$fleft( x ight) > frac{1}{2}l$,于是[mathop {lim }limits_{x o egin{array}{*{20}{c}} {{ m{ + }}infty } end{array}} int_M^x {fleft( t ight)dt} ge mathop {lim }limits_{x o egin{array}{*{20}{c}} {{ m{ + }}infty } end{array}} frac{1}{2}lleft( {x - M} ight) = + infty ] 这与$int_a^{ + infty } {fleft( x ight)dx} $收敛矛盾,故$lim limits_{x o egin{array}{*{20}{c}} {{ m{ + }}infty } end{array}} fleft( x ight) = 0$

    $f{注1:}$由于$int_a^{ + infty } {fleft( x ight)dx} $收敛,所以$lim limits_{A o egin{array}{*{20}{c}} { + infty } end{array}} int_a^A {fleft( x ight)dx} $存在

    $f{注2:}$若$sumlimits_{n = 1}^infty {{a_n}} $收敛,则$lim limits_{n o infty } {a_n} = 0$

  • 相关阅读:
    mysql之数据类型以及操作数据表
    mysql之提示符
    神经网络-1
    matlab使用摄像头人脸识别
    使用git和intelliJ
    VS配置使用第三方库
    Qt(1)
    附录:其他相关知识
    附录:python and numpy
    上手Caffe(二)
  • 原文地址:https://www.cnblogs.com/ly758241/p/3706473.html
Copyright © 2011-2022 走看看