zoukankan      html  css  js  c++  java
  • 05626265


    设[mathop {lim }limits_{x o egin{array}{*{20}{c}}
    {{a^ + }}
    end{array}} fleft( x ight) = mathop {lim }limits_{x o egin{array}{*{20}{c}}
    { + infty }
    end{array}} fleft( x ight) = A]

    其中$A$是有限数或$pm infty $

    若$fleft( x ight) = A$,则结论显然成立;若$fleft( x ight) e A$,则存在${x_0} in left( {a, + infty } ight)$,使得$fleft( {{x_0}} ight) e A$.

    不妨设$fleft( {{x_0}} ight) > A$,则由实数的稠密性知,存在${varepsilon _0} > 0$,使得[fleft( {{x_0}} ight) > fleft( {{x_0}} ight) - {varepsilon _0} > A]

    由$lim limits_{x o egin{array}{*{20}{c}}
    {{a^ + }}
    end{array}} fleft( x ight) = A < A + {varepsilon _0}$及极限的保号性知
    [exists delta > 0,forall x in left( {a,a + delta } ight),有fleft( x ight) < A + {varepsilon _0}]

    特别地,取${x_1} in left( {a,a + delta } ight)$,且${x_1} < {x_0}$,则
    [fleft( {{x_1}} ight) < A + {varepsilon _0} < fleft( {{x_0}} ight)]

    由连续函数介值定理知,存在${xi _1} in left( {{x_1},{x_0}} ight)$,使得
    [fleft( {{xi _1}} ight) = A + {varepsilon _0}]

    由$lim limits_{x o egin{array}{*{20}{c}}
    { + infty }
    end{array}} fleft( x ight) = A < A + {varepsilon _0}$及极限的保号性知
    [exists M > a,forall x > M,有fleft( x ight) < A + {varepsilon _0}]


    特别地,取${x_2} in left( {M, + infty } ight)$,且${x_0} < {x_2}$,则
    [fleft( {{x_2}} ight) < A + {varepsilon _0} < fleft( {{x_0}} ight)]

    由连续函数介值定理知,存在${xi _2} in left( {{x_0},{x_2}} ight)$,使得
    [fleft( {{xi _2}} ight) = A + {varepsilon _0}]

    由$Rolle$中值定理知,存在$xi in left( {{xi _1},{xi _2}} ight)$,使得
    [f'left( xi ight) = 0]

  • 相关阅读:
    CentOS_关机与重启命令详解
    去除ArrayList重复的对象
    单项设计模式
    死循环的应用
    java学习心得-面向对象与面向过程
    计算机使用个人经验及日常维护
    linux操作系统简介
    集合
    项目学习4
    周末总结
  • 原文地址:https://www.cnblogs.com/ly758241/p/3725570.html
Copyright © 2011-2022 走看看