zoukankan      html  css  js  c++  java
  • 05626265


    设[mathop {lim }limits_{x o egin{array}{*{20}{c}}
    {{a^ + }}
    end{array}} fleft( x ight) = mathop {lim }limits_{x o egin{array}{*{20}{c}}
    { + infty }
    end{array}} fleft( x ight) = A]

    其中$A$是有限数或$pm infty $

    若$fleft( x ight) = A$,则结论显然成立;若$fleft( x ight) e A$,则存在${x_0} in left( {a, + infty } ight)$,使得$fleft( {{x_0}} ight) e A$.

    不妨设$fleft( {{x_0}} ight) > A$,则由实数的稠密性知,存在${varepsilon _0} > 0$,使得[fleft( {{x_0}} ight) > fleft( {{x_0}} ight) - {varepsilon _0} > A]

    由$lim limits_{x o egin{array}{*{20}{c}}
    {{a^ + }}
    end{array}} fleft( x ight) = A < A + {varepsilon _0}$及极限的保号性知
    [exists delta > 0,forall x in left( {a,a + delta } ight),有fleft( x ight) < A + {varepsilon _0}]

    特别地,取${x_1} in left( {a,a + delta } ight)$,且${x_1} < {x_0}$,则
    [fleft( {{x_1}} ight) < A + {varepsilon _0} < fleft( {{x_0}} ight)]

    由连续函数介值定理知,存在${xi _1} in left( {{x_1},{x_0}} ight)$,使得
    [fleft( {{xi _1}} ight) = A + {varepsilon _0}]

    由$lim limits_{x o egin{array}{*{20}{c}}
    { + infty }
    end{array}} fleft( x ight) = A < A + {varepsilon _0}$及极限的保号性知
    [exists M > a,forall x > M,有fleft( x ight) < A + {varepsilon _0}]


    特别地,取${x_2} in left( {M, + infty } ight)$,且${x_0} < {x_2}$,则
    [fleft( {{x_2}} ight) < A + {varepsilon _0} < fleft( {{x_0}} ight)]

    由连续函数介值定理知,存在${xi _2} in left( {{x_0},{x_2}} ight)$,使得
    [fleft( {{xi _2}} ight) = A + {varepsilon _0}]

    由$Rolle$中值定理知,存在$xi in left( {{xi _1},{xi _2}} ight)$,使得
    [f'left( xi ight) = 0]

  • 相关阅读:
    HTML实体符号代码速查表
    在vue中使用css预编辑器
    多个SVG图形集成到一个SVG图形上
    CSS3那些不为人知的高级属性
    如何搭建一个vue项目(完整步骤)
    Vue.js——vue-resource全攻略
    this.$router.push、replace、go的区别
    Vue界面中关于APP端回调方法问题
    Vue、webpack中默认的config.js、index.js 配置详情
    vue mint ui 手册文档
  • 原文地址:https://www.cnblogs.com/ly758241/p/3725570.html
Copyright © 2011-2022 走看看