zoukankan      html  css  js  c++  java
  • 4367

    $f(Lusin定理)$设$fleft( x ight)$是可测集$E$上几乎处处有限的可测函数,

    则对任给$delta  > 0$,存在闭集$F subset E$,使得$mleft( {Eackslash F} ight) < delta $,且$fleft( x ight)$在$F$上连续

    $f证明$  由于$mleft( {Eleft( {left| f ight| =  + infty } ight)} ight) = 0$,我们不妨设$fleft( x ight)$是处处有限的

       $f(1)$首先,我们考虑$fleft( x ight)$是简单函数的情况,此时[fleft( x ight) = sumlimits_{i = 1}^n {{c_i}{chi _{{E_i}}}left( x ight)} ,x in E = igcuplimits_{i = 1}^n {{E_i}} ]由于每个${E_i}$是可测的,则对任给$delta  > 0$,存在闭集${F_i} subset {E_i}$,使得[mleft( {{E_i}ackslash {F_i}} ight) < delta /n]

    又由于$fleft( x ight)$在每个${F_i}$上是常值函数,从而在${F_i}$上连续;而${F_1}, cdots ,{F_n}$互不相交,令[F = igcuplimits_{i = 1}^n {{F_i}} ]则闭集$F subset E$,使得$mleft( {Eackslash F} ight) = sumlimits_{i = 1}^n {mleft( {{E_i}ackslash {F_i}} ight)}  < delta $,且$fleft( x ight)$在$F$上连续

       $f(2)$其次,我们考虑$fleft( x ight)$是一般可测函数的情况,由于可作变换[gleft( x ight) = frac{{fleft( x ight)}}{{1 + left| {fleft( x ight)} ight|}}]因此我们不妨设$fleft( x ight)$是有界可测函数,于是存在可测的简单函数列$left{ {{varphi _k}left( x ight)} ight}$在$E$上一致收敛于$fleft( x ight)$,从而由$f(1)$知,对任给$delta  > 0$,存在闭集${F_k} subset {E}$,使得$mleft( {Eackslash {F_k}} ight) < frac{delta }{{{2^k}}}$,且${{varphi _k}left( x ight)}$在${F_k} $上连续,令[{F} = igcaplimits_{k = 1}^infty  {{F_k}} ]则闭集$F subset E$,使得

    [egin{array}{l}
    mleft( {Eackslash {F }} ight) &= mleft( {Eackslash igcaplimits_{k = 1}^infty {{F_k}} } ight)\
    &= mleft( {igcuplimits_{k = 1}^infty {left( {Eackslash {F_k}} ight)} } ight) le sumlimits_{k = 1}^infty {mleft( {Eackslash {F_k}} ight)}  < delta 
    end{array}]且${{varphi _k}left( x ight)}$在${F }$上连续,而$left{ {{varphi _k}left( x ight)} ight}$一致收敛于$fleft( x ight)$,所以$fleft( x ight)$在${F }$连续

  • 相关阅读:
    JSR303实现数据校验案例
    maven安装和相关配置
    mybatis分页插件使用案例
    分页查询案例
    ssm整合相关配置
    配置文件没有按照maven约定存放解决方法
    git常用命令和基本使用
    mybatis配置二级缓存
    Angular第三方UI组件库------ionic
    Angular路由知识点
  • 原文地址:https://www.cnblogs.com/ly758241/p/3762711.html
Copyright © 2011-2022 走看看