zoukankan      html  css  js  c++  java
  • 295565656

    $f证明$  $(1)$由${f_n}$依测度收敛于$f(x)$知,对任何自然数$k$,存在自然数${n_k}left( { > {n_{k - 1}}} ight)$,使得当$n ge {n_k}$时,有[mleft( {Eleft( {left| {{f_n} - f} ight| ge frac{1}{{{2^k}}}} ight)} ight) < frac{1}{{{2^k}}}]

    记${E_k} = Eleft( {left| {{f_{{n_k}}} - f} ight| ge frac{1}{{{2^k}}}} ight)$,则$mleft( {{E_k}} ight) < frac{1}{{{2^k}}}$,令

    [{F_k} = igcaplimits_{i = k}^infty  {left( {Eackslash {E_i}} ight)} ]由于$Eackslash {E_i} = Eleft( {left| {{f_{{n_i}}} - f} ight| < frac{1}{{{2^i}}}} ight)$,所以我们有[{F_k} = Eleft( {left| {{f_{{n_i}}} - f} ight| < frac{1}{{{2^i}}},i = k,k + 1, cdots } ight)]

    即函数列${f_{{n_i}}}left( x ight)$在${F_k}$上一致收敛于$f(x)$,于是${f_{{n_i}}}left( x ight)$在$F = igcuplimits_{k = 1}^infty  {{F_k}} $上处处收敛于$f(x)$

    $(2)$下面我们只需证明$mleft( {Eackslash F} ight) = 0$即可,由于[Eackslash F = igcaplimits_{k = 1}^infty  {left( {Eackslash {F_k}} ight)}  = igcaplimits_{k = 1}^infty  {igcuplimits_{i = k}^infty  {{E_i}} }  = mathop {overline {lim } }limits_{i o infty } {E_i} subset igcuplimits_{i = 1}^infty  {{E_i}} ]而[mleft( {igcuplimits_{i = 1}^infty  {{E_i}} } ight) le sumlimits_{i = 1}^infty  {mleft( {{E_i}} ight)}  le sumlimits_{i = 1}^infty  {frac{1}{{{2^i}}}}  = 1]所以我们有$mleft( {Eackslash F} ight) = 0$

    $f注1:$由上限集与下限集的定义知,[igcaplimits_{n = 1}^infty  {{A_n}}  subset mathop {underline {lim } }limits_{n o infty } {A_n} subset mathop {overline {lim } }limits_{n o infty } {A_n} subset igcuplimits_{n = 1}^infty  {{A_n}} ]

  • 相关阅读:
    LeetCode Best Time to Buy and Sell Stock
    LeetCode Scramble String
    LeetCode Search in Rotated Sorted Array II
    LeetCode Gas Station
    LeetCode Insertion Sort List
    LeetCode Maximal Rectangle
    Oracle procedure
    浏览器下载代码
    Shell check IP
    KVM- 存储池配置
  • 原文地址:https://www.cnblogs.com/ly758241/p/3764686.html
Copyright © 2011-2022 走看看