证明:由$f$可积的定义知,对任意的$varepsilon > 0$,存在$N$,使得[int_a^b {left| {fleft( x ight) - {{left[ f ight]}_N}left( x ight)} ight|dx} < frac{varepsilon }{3}]对于函数${{{left[ f ight]}_N}}$,由$f{Lusin定理}$知,对任给$delta = frac{varepsilon }{{3N + 1}} > 0$,存在闭集${E_delta } subset left[ {a,b} ight]$,以及存在$left[ {a,b} ight]$上连续函数$varphi :$$left| {varphi left( x ight)} ight| le N$,使得$mleft( {{E_delta }} ight) < delta $,且当$x in left[ {a,b} ight]ackslash {E_delta }$时,$varphi left( x ight) = {left[ f ight]_N}left( x ight)$,于是[int_a^b {left| {{{left[ f ight]}_N}left( x ight) - varphi left( x ight)} ight|dx} = int_{{E_delta }} {left| {{{left[ f ight]}_N}left( x ight) - varphi left( x ight)} ight|dx} le frac{{2varepsilon N}}{{3N + 1}} < frac{{2varepsilon }}{3}]所以有[int_a^b {left| {fleft( x ight) - varphi left( x ight)} ight|dx} le int_a^b {left| {fleft( x ight) - {{left[ f ight]}_N}left( x ight)} ight|dx} + int_a^b {left| {{{left[ f ight]}_N}left( x ight) - varphi left( x ight)} ight|dx} < varepsilon ]