zoukankan      html  css  js  c++  java
  • 分类模型评估

    # 分类模型评估

    - sklearn.metrics.accuracy_score
    - 定义:分类的准确率

    - 在多标签分类中,此函数计算子集的准确性为:样本预测的标签集必须与y_true中的相应标签集*完全*匹配

    - 参数

    - y_true
    - 样本的真实值 形状:1d array-like
    - y_pred
    - 样本的预测值 形状:1d array-like
    - normalize
    - False :返回预测正确的样本数量 True:返回预测正确的样本百分比
    - sample_weight
    - 样本权重

    - 例子

    ```
    from sklearn.metrics import accuracy_score

    y_true = [0, 1, 2, 3]
    y_pred = [0, 2, 1, 3]
    normalize = False
    sample_weight = [1, 2, 3, 2]

    res = accuracy_score(y_true=y_true, y_pred=y_pred, normalize=normalize, sample_weight=sample_weight)
    print(res)

    ---------
    3

    ```

    - 计算过程
    - y_true == y_pred = [1,0,0,1]
    - 1 * 1+0 * 2+0 * 3+1 * 2 = 3

    - sklearn.metrics.balanced_accuracy_score

    - 针对样本各个分类的平均准确率

    - 参数

    - y_true
    - 样本的真实值 形状:1d array-like
    - y_pred
    - 样本的预测值 形状:1d array-like
    - adjusted
    - 如果为true,则对结果进行机会调整,以便随机性能得分为0,而完美性能得分为1
    - sample_weight
    - 样本权重

    - 例子

    ```
    from sklearn.metrics import accuracy_score,balanced_accuracy_score

    y_true = [0, 1, 2, 0, 0]
    y_pred = [0, 2, 2, 0, 1]
    normalize = False
    sample_weight = [1, 2, 3, 2, 5]

    res = balanced_accuracy_score(y_true=y_true, y_pred=y_pred, sample_weight=sample_weight,adjusted=False)
    print(res)
    res = balanced_accuracy_score(y_true=y_true, y_pred=y_pred, sample_weight=sample_weight,adjusted=True)
    print(res)
    ----------------
    0.4583333333333333
    0.18749999999999997
    ```

    - 计算过程
    - y_true == y_pred = [1, 0, 1, 1, 0]
    - y_true [ 0 ,1, 2 ,0, 0]
    - sample_weight = [1, 2, 3, 2, 5]
    - 各个样本[ 0 , 1, 2 ]种类的预测的准确率为 [(1x1+1x2+0x5)/(1+2+5),(0x2)/2,(1x3)/3]
    - 各个样本[ 0 , 1, 2 ]种类的预测的准确率为[3/8,0,1]
    - 共有三种样本
    - adjusted = False 平均样本准确率为 (3/8+0+1)/3 = 0.4583
    - adjusted = True
    - 平均样本准确率为 (3/8+0+1)/3 = 0.4583
    - 0.4583 - (1/3) = 0.125
    - 0.125/(1-1/3) = 0.188

  • 相关阅读:
    poj3905 2sat!
    poj3648,2-sat求解
    poj2723 2sat判断解+二分
    hdu3622 2-sat问题,二分+判断有无解即可。
    poj2767,单向连通图判定,缩点+重新建图+新图DFS
    poj2186 求有向图G中所有点都能到达的点的数量
    poj2553 有向图缩点,强连通分量。
    poj 1236+hdu2767 有向图 缩点+看度数(tarjan)
    poj3694+hdu2460 求桥+缩点+LCA/tarjan
    dfs + 最小公倍数 Codeforces Round #383 (Div. 2)
  • 原文地址:https://www.cnblogs.com/lycsdhr/p/13623986.html
Copyright © 2011-2022 走看看