迭代器
内部有一个_iter_内置方法,表示这个类型是可迭代的
什么叫迭代
不可以for循环的类型,不可迭代,如果可迭代,就可以被for循环
字符串、列表、元组、字典、集合都可以被for循环,说明他们都是可迭代的
from collections import Iterable l = [1,2,3,4] t = (1,2,3,4) d = {1:2,3:4} s = {1,2,3,4} print(isinstance(l,Iterable)) print(isinstance(t,Iterable)) print(isinstance(d,Iterable)) print(isinstance(s,Iterable))
结合我们使用for循环取值的现象,再从字面上理解一下,其实迭代就是我们刚刚说的,可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代。
可迭代协议
假如我们自己写了一个数据类型,希望这个数据类型里的东西也可以使用for被一个一个的取出来,那我们就必须满足for的要求。这个要求就叫做“协议”。
可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义非常简单,就是内部实现了__iter__方法。
输入ist([1,2])的__iter__方法,输出得到了一个list_iterator,现在我们又得到了一个新名词——iterator
iterator,这里给我们标出来了,是一个计算机中的专属名词,叫做迭代器。
迭代器协议
__next__方法可以在迭代器里一个一个取值
迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法
验证range()是否是一个迭代器
print('__next__' in dir(range(12))) #查看'__next__'是不是在range()方法执行之后内部是否有__next__ print('__iter__' in dir(range(12))) #查看'__next__'是不是在range()方法执行之后内部是否有__next__ from collections import Iterator print(isinstance(range(100000000),Iterator)) #验证range执行之后得到的结果不是一个迭代器
为什么有了迭代器还有一个for循环
序列类型字符串,列表,元组都有下标,你用上述的方式访问,perfect!但是你可曾想过非序列类型像字典,集合,文件对象的感受,所以嘛,年轻人,for循环就是基于迭代器协议提供了一个统一的可以遍历所有对象的方法,即在遍历之前,先调用对象的__iter__方法将其转换成一个迭代器,然后使用迭代器协议去实现循环访问,这样所有的对象就都可以通过for循环来遍历了,而且你看到的效果也确实如此,这就是无所不能的for循环。
生成器
Python中提供的生成器:
1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行
2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表
生成器Generator:
本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)
特点:惰性运算,开发者自定义
生成器函数
一个包含yield关键字的函数就是一个生成器函数
import time def genrator_fun1(): a = 1 print('现在定义了a变量') yield a b = 2 print('现在又定义了b变量') yield b g1 = genrator_fun1() print('g1 : ',g1) #打印g1可以发现g1就是一个生成器 print('-'*20) #我是华丽的分割线 print(next(g1)) time.sleep(1) #sleep一秒看清执行过程 print(next(g1)) 初识生成器函数
一个包含yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值,但是yield又不同于return,return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。
生成器有什么好处呢?就是不会一下子在内存中生成太多数据
def tail(filename): f = open(filename) f.seek(0, 2) #从文件末尾算起 while True: line = f.readline() # 读取文件中新的文本行 if not line: time.sleep(0.1) continue yield line tail_g = tail('111') for line in tail_g: print(line)
def generator(): print(123) content = yield 1 print('=======',content) print(456) yield2 g = generator() ret = g.__next__() print('***',ret) ret = g.send('hello') #send的效果和next一样 print('***',ret) #send 获取下一个值的效果和next基本一致 #只是在获取下一个值的时候,给上一yield的位置传递一个数据 #使用send的注意事项 # 第一次使用生成器的时候 是用next获取下一个值 # 最后一个yield不能接受外部的值
def init(func): #在调用被装饰生成器函数的时候首先用next激活生成器 def inner(*args,**kwargs): g = func(*args,**kwargs) next(g) return g return inner @init def averager(): total = 0.0 count = 0 average = None while True: term = yield average total += term count += 1 average = total/count g_avg = averager() # next(g_avg) 在装饰器中执行了next方法 print(g_avg.send(10)) print(g_avg.send(30)) print(g_avg.send(5))
def gen1(): for c in 'AB': yield c for i in range(3): yield i print(list(gen1())) def gen2(): yield from 'AB' yield from range(3) print(list(gen2())) yield from
小结:
可迭代对象:
拥有__iter__方法
特点:惰性运算
例如:range(),str,list,tuple,dict,set
迭代器Iterator:
拥有__iter__方法和__next__方法
例如:iter(range()),iter(str),iter(list),iter(tuple),iter(dict),iter(set),reversed(list_o),map(func,list_o),filter(func,list_o),file_o
生成器Generator:
本质:迭代器,所以拥有__iter__方法和__next__方法
特点:惰性运算,开发者自定义
使用生成器的优点:
1.延迟计算,一次返回一个结果。也就是说,它不会一次生成所有的结果,这对于大数据量处理,将会非常有用。