zoukankan      html  css  js  c++  java
  • Levenshtein distance 编辑距离

    编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符

    实现方案:

    1. 找出最长公共子串长度

    参考代码:

    apache commons-lang

    public static int getLevenshteinDistance(CharSequence s, CharSequence t) {
    if (s == null || t == null) {
    throw new IllegalArgumentException("Strings must not be null");
    }

    /*
    The difference between this impl. and the previous is that, rather
    than creating and retaining a matrix of size s.length() + 1 by t.length() + 1,
    we maintain two single-dimensional arrays of length s.length() + 1. The first, d,
    is the 'current working' distance array that maintains the newest distance cost
    counts as we iterate through the characters of String s. Each time we increment
    the index of String t we are comparing, d is copied to p, the second int[]. Doing so
    allows us to retain the previous cost counts as required by the algorithm (taking
    the minimum of the cost count to the left, up one, and diagonally up and to the left
    of the current cost count being calculated). (Note that the arrays aren't really
    copied anymore, just switched...this is clearly much better than cloning an array
    or doing a System.arraycopy() each time through the outer loop.)

    Effectively, the difference between the two implementations is this one does not
    cause an out of memory condition when calculating the LD over two very large strings.
    */

    int n = s.length(); // length of s
    int m = t.length(); // length of t

    if (n == 0) {
    return m;
    } else if (m == 0) {
    return n;
    }

    if (n > m) {
    // swap the input strings to consume less memory
    final CharSequence tmp = s;
    s = t;
    t = tmp;
    n = m;
    m = t.length();
    }

    int p[] = new int[n + 1]; //'previous' cost array, horizontally
    int d[] = new int[n + 1]; // cost array, horizontally
    int _d[]; //placeholder to assist in swapping p and d

    // indexes into strings s and t
    int i; // iterates through s
    int j; // iterates through t

    char t_j; // jth character of t

    int cost; // cost

    for (i = 0; i <= n; i++) {
    p[i] = i;
    }

    for (j = 1; j <= m; j++) {
    t_j = t.charAt(j - 1);
    d[0] = j;

    for (i = 1; i <= n; i++) {
    cost = s.charAt(i - 1) == t_j ? 0 : 1;
    // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
    d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + cost);
    }

    // copy current distance counts to 'previous row' distance counts
    _d = p;
    p = d;
    d = _d;
    }

    // our last action in the above loop was to switch d and p, so p now
    // actually has the most recent cost counts
    return p[n];
    }
  • 相关阅读:
    JDBC初体验
    Linux的常用命令--文件的相关操作
    Spring框架之AOP的基本配置
    坦克大战系列7-策略分析之扫描策略和移动策略
    坦克大战系列8-策略分析之瞄准策略
    CF846F Random Query
    CF388C Fox and Card Game
    CF1097F Alex and a TV Show
    CF1276C Beautiful Rectangle
    [SDOI2016]征途
  • 原文地址:https://www.cnblogs.com/lykm02/p/6023595.html
Copyright © 2011-2022 走看看