zoukankan      html  css  js  c++  java
  • densenet原理以及代码实现

    引自:https://www.cnblogs.com/Mrzhang3389/p/10127356.html



    import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict class _DenseLayer(nn.Sequential): def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): super(_DenseLayer, self).__init__() self.add_module('norm1', nn.BatchNorm2d(num_input_features)), self.add_module('relu1', nn.ReLU(inplace=True)), self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), self.add_module('relu2', nn.ReLU(inplace=True)), self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = drop_rate def forward(self, x): new_features = super(_DenseLayer, self).forward(x) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return torch.cat([x, new_features], 1) class _DenseBlock(nn.Sequential): def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate): super(_DenseBlock, self).__init__() for i in range(num_layers): layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate) self.add_module('denselayer%d' % (i + 1), layer) class _Transition(nn.Sequential): def __init__(self, num_input_features, num_output_features): super(_Transition, self).__init__() self.add_module('norm', nn.BatchNorm2d(num_input_features)) self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) class DenseNet(nn.Module): def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000): super(DenseNet, self).__init__() # First convolution self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock num_features = num_init_features for i, num_layers in enumerate(block_config): block = _DenseBlock(num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', nn.BatchNorm2d(num_features)) # Linear layer self.classifier = nn.Linear(num_features, num_classes) # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight.data) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def forward(self, x): features = self.features(x) out = F.relu(features, inplace=True) out = F.avg_pool2d(out, kernel_size=7, stride=1).view(features.size(0), -1) out = self.classifier(out) return out def densenet121(**kwargs): model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), **kwargs) return model def densenet169(**kwargs): model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32), **kwargs) return model def densenet201(**kwargs): model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32), **kwargs) return model def densenet161(**kwargs): model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24), **kwargs) return model if __name__ == '__main__': # 'DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161' # Example net = DenseNet() print(net)
  • 相关阅读:
    [转载]VC补遗之Profile篇
    [原创]百度之星2009初赛第二场第四题解答
    [总结]QT在CODE:BLOCKS中的配置
    [原创]自己写的一个简单的程序日志记录类
    [原创]QT动态加载UI文件注意事项
    window版本信息资源格式
    [原创]滚动条滚动范围的问题总结
    ofstream奇怪问题解决方法
    [转载]最小矩形(rec1)的解题报告
    oracle数据库用户之间授权
  • 原文地址:https://www.cnblogs.com/lyp1010/p/11820967.html
Copyright © 2011-2022 走看看