zoukankan      html  css  js  c++  java
  • hdu 3548 Enumerate the Triangles ( 优 化 )

    题 目 :

    Problem Description
    Little E is doing geometry works. After drawing a lot of points on a plane, he want to enumerate all the triangles which the vertexes are three of the points to find out the one with minimum perimeter. Your task is to implement his work.
     
    Input
    The input contains several test cases. The first line of input contains only one integer denoting the number of test cases.
    The first line of each test cases contains a single integer N, denoting the number of points. (3 <= N <= 1000)
    Next N lines, each line contains two integer X and Y, denoting the coordinates of a point. (0 <= X, Y <= 1000)
     
    Output
    For each test cases, output the minimum perimeter, if no triangles exist, output "No Solution".
     
    Sample Input
    2
    3
    0 0
    1 1
    2 2
    4
    0 0
    0 2
    2 1
    1 1
     
    Sample Output
     
    Case 1: No Solution
    Case 2: 4.650
     

    题意:

    平面上有n(n<=1000)点,问组成的三角形中,周长最小是多少。

    优化:

    周长c=L1+L2+L3,所以推得c > 2Li,假设Li的端点为点a、b,则又有Li>=| Xa-Xb |,故c > 2*| Xa-Xb |。

     

    代码:

     

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<algorithm>
     5 
     6 using namespace std;
     7 
     8 struct Length
     9 {
    10     int x,y;
    11 }L[1005];
    12 
    13 bool com(Length a,Length b)
    14 {
    15     return a.x<b.x;
    16 }
    17 
    18 int main( ) {
    19 
    20     int N,n,flag,xx=0;
    21     double Min,s1,s2,s3;
    22     cin >>N;
    23     while(N--){
    24         cin >>n;
    25         Min=99999; flag=0;
    26         for( int i=1;i<=n;i++)
    27            scanf("%d %d",&L[i].x,&L[i].y);
    28         sort(L+1,L+n+1,com);
    29         for( int i=1;i<=n-2;i++){
    30             for( int j=i+1;j<=n-1;j++){
    31                 if( Min<=2*(L[j].x-L[i].x) ) break;
    32                 s1=sqrt( ( (L[i].x-L[j].x)*(L[i].x-L[j].x)+(L[i].y-L[j].y)*(L[i].y-L[j].y) )*1.0);
    33                 if( Min<=2*s1 ) continue;
    34                 for( int k=j+1;k<=n;k++){
    35                     int t1=(L[i].x-L[j].x)*(L[j].y-L[k].y), t2=(L[j].x-L[k].x)*(L[i].y-L[j].y);
    36                     if( t1==t2 ) continue;
    37                     flag=1;
    38                     s1=sqrt( ( (L[i].x-L[j].x)*(L[i].x-L[j].x)+(L[i].y-L[j].y)*(L[i].y-L[j].y) )*1.0);
    39                     s2=sqrt( ( (L[k].x-L[j].x)*(L[k].x-L[j].x)+(L[k].y-L[j].y)*(L[k].y-L[j].y) )*1.0);
    40                     s3=sqrt( ( (L[k].x-L[i].x)*(L[k].x-L[i].x)+(L[k].y-L[i].y)*(L[k].y-L[i].y) )*1.0);
    41                     Min= min( Min, s1+s2+s3 );
    42                 }
    43             }
    44         }
    45         cout <<"Case " <<++xx <<": ";
    46         if( flag ) printf("%.3lf
    ",Min);
    47         else printf("No Solution
    ");
    48     }
    49 }
    View Code
     
     
     
  • 相关阅读:
    0401-服务注册与发现、Eureka简介
    001-OSI七层模型,TCP/IP五层模型
    云原生应用开发12-Factors
    0301-服务提供者与服务消费者
    0201-开始使用Spring Cloud实战微服务准备工作
    0107-将Monolith重构为微服务
    0106-选择微服务部署策略
    0105-微服务的事件驱动的数据管理
    0104-微服务体系结构中的服务发现
    0103-微服务架构中的进程间通信
  • 原文地址:https://www.cnblogs.com/lysr--tlp/p/eee.html
Copyright © 2011-2022 走看看