zoukankan      html  css  js  c++  java
  • hdu 3548 Enumerate the Triangles ( 优 化 )

    题 目 :

    Problem Description
    Little E is doing geometry works. After drawing a lot of points on a plane, he want to enumerate all the triangles which the vertexes are three of the points to find out the one with minimum perimeter. Your task is to implement his work.
     
    Input
    The input contains several test cases. The first line of input contains only one integer denoting the number of test cases.
    The first line of each test cases contains a single integer N, denoting the number of points. (3 <= N <= 1000)
    Next N lines, each line contains two integer X and Y, denoting the coordinates of a point. (0 <= X, Y <= 1000)
     
    Output
    For each test cases, output the minimum perimeter, if no triangles exist, output "No Solution".
     
    Sample Input
    2
    3
    0 0
    1 1
    2 2
    4
    0 0
    0 2
    2 1
    1 1
     
    Sample Output
     
    Case 1: No Solution
    Case 2: 4.650
     

    题意:

    平面上有n(n<=1000)点,问组成的三角形中,周长最小是多少。

    优化:

    周长c=L1+L2+L3,所以推得c > 2Li,假设Li的端点为点a、b,则又有Li>=| Xa-Xb |,故c > 2*| Xa-Xb |。

     

    代码:

     

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<algorithm>
     5 
     6 using namespace std;
     7 
     8 struct Length
     9 {
    10     int x,y;
    11 }L[1005];
    12 
    13 bool com(Length a,Length b)
    14 {
    15     return a.x<b.x;
    16 }
    17 
    18 int main( ) {
    19 
    20     int N,n,flag,xx=0;
    21     double Min,s1,s2,s3;
    22     cin >>N;
    23     while(N--){
    24         cin >>n;
    25         Min=99999; flag=0;
    26         for( int i=1;i<=n;i++)
    27            scanf("%d %d",&L[i].x,&L[i].y);
    28         sort(L+1,L+n+1,com);
    29         for( int i=1;i<=n-2;i++){
    30             for( int j=i+1;j<=n-1;j++){
    31                 if( Min<=2*(L[j].x-L[i].x) ) break;
    32                 s1=sqrt( ( (L[i].x-L[j].x)*(L[i].x-L[j].x)+(L[i].y-L[j].y)*(L[i].y-L[j].y) )*1.0);
    33                 if( Min<=2*s1 ) continue;
    34                 for( int k=j+1;k<=n;k++){
    35                     int t1=(L[i].x-L[j].x)*(L[j].y-L[k].y), t2=(L[j].x-L[k].x)*(L[i].y-L[j].y);
    36                     if( t1==t2 ) continue;
    37                     flag=1;
    38                     s1=sqrt( ( (L[i].x-L[j].x)*(L[i].x-L[j].x)+(L[i].y-L[j].y)*(L[i].y-L[j].y) )*1.0);
    39                     s2=sqrt( ( (L[k].x-L[j].x)*(L[k].x-L[j].x)+(L[k].y-L[j].y)*(L[k].y-L[j].y) )*1.0);
    40                     s3=sqrt( ( (L[k].x-L[i].x)*(L[k].x-L[i].x)+(L[k].y-L[i].y)*(L[k].y-L[i].y) )*1.0);
    41                     Min= min( Min, s1+s2+s3 );
    42                 }
    43             }
    44         }
    45         cout <<"Case " <<++xx <<": ";
    46         if( flag ) printf("%.3lf
    ",Min);
    47         else printf("No Solution
    ");
    48     }
    49 }
    View Code
     
     
     
  • 相关阅读:
    request-log-analyzer日志分析
    ubuntu下git输出的颜色变化
    vundle安装 给vim插上翅膀
    安装ruby
    【HDU1944】S-Nim-博弈论:SG函数
    【HDU1944】S-Nim-博弈论:SG函数
    我对SG函数的理解
    我对SG函数的理解
    【POJ2154】Color-Polya定理+欧拉函数
    【POJ2154】Color-Polya定理+欧拉函数
  • 原文地址:https://www.cnblogs.com/lysr--tlp/p/eee.html
Copyright © 2011-2022 走看看