Longest Valid Parentheses
Given a string containing just the characters '('
and ')'
, find the length of the longest valid (well-formed) parentheses substring.
For "(()"
, the longest valid parentheses substring is "()"
, which has length = 2.
Another example is ")()())"
, where the longest valid parentheses substring is "()()"
, which has length = 4.
思路1:
从左到右依次扫描,用一个数组v记录括号是否已经匹配。然后再扫描一次v,用一个变量count记录连续合法括号数目。如果v[i] = 0则说明该括号未匹配,合法括号序列终端,count = 0. 代码如下:
Runtime: 22 ms
class Solution { public: int longestValidParentheses(string s) { vector<int> v(s.length(), 0); stack<int> stac; for (int i = 0; i < s.length(); ++i) { if (s[i] == ')') { if (stac.empty()) continue; else { v[i] = 2; v[stac.top()] = 2; stac.pop(); } } else stac.push(i); } int res = 0, count = 0; for (int i = 0; i < s.length(); ++i) { if (v[i] == 0) { if (res < count) res = count; count = 0; } else if (s[i] == '(') count += v[i]; } return res < count ? count : res; } };
思路二:
先从左到右扫描,分别记录'('和')'的数目, 如果一旦')'的数目大于'(' 那么可以确定合法连续括号序列中断。记录countMax。
然后从右往左扫描,同样分别记录'('和')'的数目, 如果一旦'('的数目大于')' , 那么可以确定合法连续括号序列中断。记录countMax。
代码如下:
Runtime: 10 ms
class Solution { public: int longestValidParentheses(string s) { int ll = 0, lr = 0, li = 0; int rl = 0, rr = 0, ri = s.length()-1; int res = 0; for (; li < s.length() && ri >= 0; ++li, --ri) { switch (s[li]) { case '(': ++ll; break; case ')': ++lr; } switch (s[ri]) { case '(': ++rl; break; case ')': ++rr; } if (ll == lr && (ll * 2) > res) res = 2 * ll; else if (ll < lr) ll = lr = 0; if (rl == rr && (rl * 2) > res) res = 2 * rl; else if (rl > rr) rl = rr = 0; } return res; } private: };