zoukankan      html  css  js  c++  java
  • AGC001F Wide Swap【思维·拓扑关系·权值线段树】

    题意简述

    你有一个长度为(N)的排列。将(i)(j)两个位置的数字交换的条件是:(|i-j|>=k)并且(|Ai-Aj|=1)
    你可以进行无数次交换操作,输出操作后能够得到的最小的字典序的排列。

    (N≤5e5)

    分析

    首先,第一步的转化就很不容易想到。

    就是我们可以把数和下标进行调换。

    定义反函数(Q[A[i]]=i),那么条件就可以转化为:相邻两个数满足差的绝对值大于等于(k)就可以进行交换。

    这样我们就把交换的距离限定在了相邻的两个数之间,比较方便。

    要求(A[])的字典序最小,那么也就是(Q[])的字典序最小。简单证明一下:

    假设(Q[])字典序最小的方案(Q_a)是:(Q_1Q_2Q_3...Q_i...Q_n)

    (A[])字典序最小的方案对应的(Q_b)是:(Q_1Q_2Q_3...Q_i'...Q_n)

    这两个序列前面都是一样的,从第(i)位开始有区别,由于(Q_a)是所有(Q[])中字典序最小的,所以(Q_i<Q_i')。那么在(Q_a)方案对应的(A[])中,(i)被放在了更前面的位置,由于([1,i-1])的放置位置是一样的,所以(Q_a)方案更优。


    所以现在我们的问题就变成了:对于数组(Q[]),相邻两个数满足差的绝对值大于等于(k)就可以进行交换,可以交换无数次,求字典序最小的结果。

    我们发现这玩意儿有点像冒泡排序,我们想把大的往后面移,但是移动的条件是(Q[i]-Q[i+1]≥k)。我们可以发现,对于任意的(i<j),如果(|Q[i]-Q[j]|<k),那么这两个数的相对位置无法改变,哪怕中间可以把他们换到相邻,他们两个也会无法交换,也就是(Q[i])一直会在(Q[j])的前面。

    这样就可以想到拓扑排序了,我们对于两个数(i<j),如果(|Q[i]-Q[j]|),那么就连一条(i->j)的单向边,表示(Q[i])要在(Q[j])的前面,按照拓扑序安排数的顺序,就符合条件。


    但是这样做,边是(O(n^2))的,所以复杂度很高。

    我们注意到有些边可能是没用的,比如(a->b,b->c),那么(a->c)就是一个无用的约束条件。

    所以就可以不连(a->c)那样的边,每个数连它右边最近的那个满足条件的点就可以了,这样约束关系就可以传递过去,而且每个点都最多只会有一个出度。

    怎么找它右边最近的那个满足条件的点呢?用权值线段树维护。

    Code View

    #include<cstdio>
    #include<algorithm>
    #include<queue>
    #include<cstring>
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<map>
    using namespace std;
    #define N 500005
    #define INF 0x3f3f3f3f
    #define LL long long
    int rd()
    {
    	int x=0,f=1;char c=getchar();
    	while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
    	while(c>='0'&&c<='9'){x=(x<<3)+(x<<1)+(c^48); c=getchar();}
    	return f*x;
    }
    priority_queue<int,vector<int>,greater<int> > Q;//小根堆 保证字典序最小 
    int n,k,m;
    int ind[N];
    vector<int>G[N];
    int q[N],ans[N];
    int tree[N<<2];
    //权值线段树 维护区间最小值(因为是从右到左 就是离他最近 
    void PushUp(int i)
    {
    	tree[i]=min(tree[i<<1],tree[i<<1|1]);
    }
    void Update(int i,int l,int r,int pos,int val)
    {
    	if(l==r)
    	{
    		tree[i]=val;
    		return ;
    	}
    	int mid=(l+r)>>1;
    	if(pos<=mid) Update(i<<1,l,mid,pos,val);
    	else Update(i<<1|1,mid+1,r,pos,val);
    	PushUp(i);
    }
    int Query(int i,int l,int r,int ql,int qr)
    {
    	if(r<ql||qr<l) return INF;
    	if(ql<=l&&qr>=r) return tree[i];
    	int mid=(l+r)>>1;
    	return min(Query(i<<1,l,mid,ql,qr),Query(i<<1|1,mid+1,r,ql,qr));
    } 
    void Topo()
    {
    	for(int i=1;i<=n;i++)
    		if(!ind[i]) Q.push(i);
    	while(!Q.empty())
    	{
    		int u=Q.top(); Q.pop();
    		q[++m]=u;
    		for(int i=0;i<G[u].size();i++)
    		{
    			int v=G[u][i];
    			ind[v]--;
    			if(!ind[v]) Q.push(v);
    		}
    	}
    }
    int main()
    {
    	memset(tree,INF,sizeof(tree));
    	n=rd(),k=rd();
    	for(int i=1;i<=n;i++)
    		q[rd()]=i;
    	for(int i=n;i>=1;i--)
    	{
    		int j=Query(1,1,n,q[i]+1,q[i]+k-1);//q[j]-q[i]<k
    		if(j!=INF) ind[q[j]]++,G[q[i]].push_back(q[j]);
    		j=Query(1,1,n,q[i]-k+1,q[i]-1);//q[i]-q[j]<k
    		if(j!=INF) ind[q[j]]++,G[q[i]].push_back(q[j]);
    		Update(1,1,n,q[i],i);
    	}
    	Topo();
    	for(int i=1;i<=n;i++)
    		ans[q[i]]=i;
    	for(int i=1;i<=n;i++)
    		printf("%d
    ",ans[i]);
    	return 0;
    }
    
    
  • 相关阅读:
    八数码问题--bfs
    子集生成——增量构造法
    回溯法
    子集生成——二进制法
    子集生成
    dfs 记忆搜索——注意剪枝方式
    pyhon---信息的爬取与提取---bs4,BeautifulSoup,re库
    008sudo用户管理
    007Linux在线升级yum
    006NFS与TFTP服务器
  • 原文地址:https://www.cnblogs.com/lyttt/p/13493584.html
Copyright © 2011-2022 走看看