zoukankan      html  css  js  c++  java
  • HDU 5291(Candy Distribution-差值dp)

    Candy Distribution

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 499    Accepted Submission(s): 189


    Problem Description
    WY has n kind of candy, number 1-N, The i-th kind of candy has ai. WY would like to give some of the candy to his teammate Ecry and lasten. To be fair, he hopes that Ecry’s candies are as many as lasten's in the end. How many kinds of methods are there?
     

    Input
    The first line contains an integer T<=11 which is the number of test cases.
    Then T cases follow. Each case contains two lines. The first line contains one integer n(1<=n<=200). The second line contains n integers ai(1<=ai<=200)
     

    Output
    For each test case, output a single integer (the number of ways that WY can distribute candies to his teammates, modulo 109+7 ) in a single line.
     

    Sample Input
    2 1 2 2 1 2
     

    Sample Output
    2 4
    Hint
    Sample: a total of 4, (1) Ecry and lasten are not assigned to the candy; (2) Ecry and lasten each to a second kind of candy; (3) Ecry points to one of the first kind of candy, lasten points to a second type of candy; (4) Ecry points to a second type of candy, lasten points to one of the first kind of candy.
     

    Author
    FZUACM
     

    Source
     

    Recommend
    We have carefully selected several similar problems for you:  5416 5415 5414 5413 5412 
     

    令f[cur][j]为当前状态,表示截至第cur类糖,A比B多j个糖的方案

    f[cur][j]=f[cur-1][j]*(a[i]/2)+f[cur-1][j±1]*(a[i]-1)/2+...+f[cur][j±a[i]]*1

    从系数上看

    a[i]=1:

    f[cur-1][j] -1 0 1
    f[cur][j] 1 1 1

    a[i]=2:

    f[cur-1][j] -2 -1 0 1 2
    f[cur][j] 1 1 2 1 1

    a[i]=3:

    f[cur-1][j] -3 -2 -1 0 1 2 3
    f[cur][j] 1 1 2 2 2 1 1

    我们奇偶分类讨论,非常easy发现f[cur][j+1]-f[cur][j] = 某段区间奇(偶)数位区间和 - 某段区间()数位区间和






    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<functional>
    #include<iostream>
    #include<cmath>
    #include<cctype>
    #include<ctime>
    using namespace std;
    #define For(i,n) for(int i=1;i<=n;i++)
    #define Fork(i,k,n) for(int i=k;i<=n;i++)
    #define Forkstep(i,k,s,n) for(int i=k;i<=n;i+=s)
    #define Rep(i,n) for(int i=0;i<n;i++)
    #define ForD(i,n) for(int i=n;i;i--)
    #define RepD(i,n) for(int i=n;i>=0;i--)
    #define Forp(x) for(int p=pre[x];p;p=next[p])
    #define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
    #define Lson (x<<1)
    #define Rson ((x<<1)+1)
    #define MEM(a) memset(a,0,sizeof(a));
    #define MEMI(a) memset(a,127,sizeof(a));
    #define MEMi(a) memset(a,128,sizeof(a));
    #define INF (2139062143)
    #define F (1000000007)
    #define MAXN (200+10)
    #define MAXSA (40000+10)
    typedef long long ll;
    ll mul(ll a,ll b){return (a*b)%F;}
    ll add(ll a,ll b){return (a+b+llabs(a+b)/F*F+F)%F;}
    //ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
    void upd(ll &a,ll b){a=(a+b+llabs(a+b)/F*F+F)%F;}
    void sub(ll &a,ll b){a=(a-b+llabs(a-b)/F*F+F)%F;}
    int n;
    const int M = 40500;
    int a[MAXN];
    ll dp[2][MAXSA*2+10000],sum[2][MAXSA*2+10000];
    
    int main()
    {
    //	freopen("hdu5291.in","r",stdin);
    //	freopen(".out","w",stdout);
    	
    	int T;cin>>T;
    	while(T--) {
    		MEM(dp) MEM(sum) MEM(a)
    		cin>>n;
    		For(i,n) scanf("%d",&a[i]);
    		
    		int cur=0,s=0,tot=0;
    		
    		dp[cur][M]=1;
    		For(i,n)
    		{
    			if (a[i]==0) continue;
    			int s=a[i];
    			MEM(sum)
    			Fork(k,1,M+tot+a[i]+a[i])
    			{
    				sum[k&1][k]=add(sum[ (k&1) ][k-1] ,dp[cur][k] );
    				sum[(k&1)^1][k]=sum[(k&1)^1][k-1] ; 
    			} 
    						
    			
    			
    			tot+=a[i];
    			cur^=1; MEM(dp[cur])
    			
    			int t=M-tot;
    			dp[cur][t]=1;
    			
    			if (s%2==0)
    				Fork(k,M-tot+1,M+tot)
    					{
    						dp[cur][k]=dp[cur][k-1];
    						upd(dp[cur][k], sum[k&1][k+s]-sum[k&1][k-1] );
    						sub(dp[cur][k], sum[(k&1)^1][k-1]-sum[(k&1)^1][k-1-s-1]);
    					}
    			else 
    				Fork(k,M-tot+1,M+tot)
    					{
    						dp[cur][k]=dp[cur][k-1];
    						upd(dp[cur][k], sum[(k&1)^1][k+s]-sum[(k&1)^1][k-1] );
    						sub(dp[cur][k], sum[k&1][k-1]-sum[k&1][k-1-s-1]);
    					}
    		} 
    		
    		
    		
    		printf("%lld
    ",dp[cur][M]);
    	}	
    	
    	
    	return 0;
    }
    





  • 相关阅读:
    性能测试通过几种方式造数据
    linux 下shell中if的“-e,-d,-f”的用法
    JVM系列二:GC策略&内存申请、对象衰老
    如何使用 opencv 加载 darknet yolo 预训练模型?
    libtorch 哪些函数比较常用?
    如何使用 libtorch 实现 VGG16 网络?
    如何使用 libtorch 实现 AlexNet 网络?
    如何使用 libtorch 实现 LeNet 网络?
    如何在 windows 配置 libtorch c++ 前端库?
    window 如何枚举设备并禁用该设备和启用该设备?如何注册设备热拔插消息通知?
  • 原文地址:https://www.cnblogs.com/lytwajue/p/7080521.html
Copyright © 2011-2022 走看看