zoukankan      html  css  js  c++  java
  • POJ 2115:C Looooops

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 19536   Accepted: 5204

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
      statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    题意是问在

    for (variable = A; variable != B; variable += C)

    这样的情况下,循环多少次。

    当中全部的数要mod 2的k次方。所以方程就是(A+C*x)%(2^k)=B,变换一下就是-C*x+(2^k)*y=A-B。解这个方程的最小正数x就可以。

    又是扩展欧几里德。


    代码:

    #include <iostream>
    #include <string>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    
    long long yue;
    
    void ex_gcd(long long a,long long b, long long &xx,long long &yy)
    {
    	if(b==0)
    	{
    		xx=1;
    		yy=0;
    		yue=a;
    	}
    	else
    	{
    		ex_gcd(b,a%b,xx,yy);
    
    		long long t=xx;
    		xx=yy;
    		yy=t-(a/b)*yy;
    	}
    }
    
    
    int main()
    {
    	long long A,B,C,k,k2,xx,yy;
    
    	while(scanf_s("%lld%lld%lld%lld",&A,&B,&C,&k))
    	{
    		if(!A&&!B&&!C&&!k)
    			break;
    
    		k2=(1LL<<k);
    		ex_gcd(-C,k2,xx,yy);
    
    		if((A-B)%yue)
    		{
    			cout<<"FOREVER"<<endl;
    		}
    		else
    		{
    			xx=xx*((A-B)/yue);
    			long long r=k2/yue;
    			if(r<0)
    				xx=(xx%r-r)%r;
    			else
    				xx=(xx%r+r)%r;
    			printf("%lld
    ",xx);
    		}
    	}
    	return 0;
    }
    


  • 相关阅读:
    洛谷 P4484
    洛谷 P4900
    Codeforces 1500D
    Codeforces 1322D
    2021.9.30 Codeforces 中档题四道
    BZOJ 3729
    洛谷 P6276
    Codeforces 1511G
    C语言 typedef
    C语言 回调函数 callback
  • 原文地址:https://www.cnblogs.com/lytwajue/p/7375275.html
Copyright © 2011-2022 走看看