Description
当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。
Input
* Line 1: Three space-separated integers: N, ML, and MD.
* Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N.
Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
* Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers:
A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
* Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input
1 3 10
2 4 20
2 3 3
INPUT DETAILS:
There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows
#2 and #3 dislike each other and must be no fewer than 3 units apart.
Sample Output
四只牛分别在0,7,10,27.
这个时候 i向i-1连一条权值为0的边 保证位置关系
因为要求d[n]-d[1]的最大值,所以要跑最短路
#include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #define LL long long const int M=1e3+7,N=1e5+7,inf=0x3f3f3f3f; int read(){ int ans=0,f=1,c=getchar(); while(c<'0'||c>'9'){if(c=='-') f=-1; c=getchar();} while(c>='0'&&c<='9'){ans=ans*10+(c-'0'); c=getchar();} return ans*f; } int n,ml,md,h[M],vis[M]; int x,y,w,dis[M]; int first[M],cnt; struct node{int to,next,w;}e[N]; void ins(int a,int b,int w){e[++cnt]=(node){b,first[a],w}; first[a]=cnt;} std::queue<int>q; bool f=false; void spfa(){ memset(dis,0x3f,sizeof(dis)); q.push(1); dis[1]=0; vis[1]=1; h[1]=1; while(!q.empty()){ int x=q.front(); q.pop(); for(int i=first[x];i;i=e[i].next){ int now=e[i].to; if(dis[now]>dis[x]+e[i].w){ dis[now]=dis[x]+e[i].w; if(!vis[now]){ vis[now]=1; q.push(now); h[now]++; if(h[now]==n){f=true; return ;} } } } vis[x]=0; } } int main(){ n=read(); ml=read(); md=read(); for(int i=1;i<=ml;i++) x=read(),y=read(),w=read(),ins(x,y,w); for(int i=1;i<=md;i++) x=read(),y=read(),w=read(),ins(y,x,-w); for(int i=1;i<n;i++) ins(i+1,i,0); spfa(); if(f) printf("-1 "); else if(dis[n]==inf) printf("-2 "); else printf("%d ",dis[n]); return 0; }