zoukankan      html  css  js  c++  java
  • [LeetCode] 687. Longest Univalue Path

    Given a binary tree, find the length of the longest path where each node in the path has the same value. This path may or may not pass through the root.

    Note: The length of path between two nodes is represented by the number of edges between them.

    Example 1:

    Input:

                  5
                 / 
                4   5
               /    
              1   1   5
    

    Output:

    2
    

    Example 2:

    Input:

                  1
                 / 
                4   5
               /    
              4   4   5
    

    Output:

    2
    

    Note: The given binary tree has not more than 10000 nodes. The height of the tree is not more than 1000.

    Similar with Binary Tree Max Path Sum,  for a given node t, the longest univalue path of this subtree whose root is t, the longest univalue path either includes t or not include t. If not including t, then the answer is either the longest univalue path of t's left subtree or right subtree. If including t, then the answer will be the sum between the left subtree longest straight path and the right subtree longest straight path. 

    Solution 1. Naive Recursion.

     1 class Solution {
     2     public int longestUnivaluePath(TreeNode root) {
     3         if(root == null) {
     4             return 0;
     5         }
     6         int leftLongestPath = longestUnivaluePath(root.left);
     7         int rightLongestPath = longestUnivaluePath(root.right);
     8         int longestPathWithoutCurrentNode = Math.max(leftLongestPath, rightLongestPath);
     9         int leftLongestSinglePath = longestSinglePath(root.left);
    10         int rightLongestSinglePath = longestSinglePath(root.right);
    11         int longestPathWithCurrentNode = 0;
    12         if(root.left != null && root.left.val == root.val) {
    13             longestPathWithCurrentNode += (leftLongestSinglePath + 1);
    14         }
    15         if(root.right != null && root.right.val == root.val) {
    16             longestPathWithCurrentNode += (rightLongestSinglePath + 1);
    17         }      
    18         return Math.max(longestPathWithoutCurrentNode, longestPathWithCurrentNode);
    19     }
    20     private int longestSinglePath(TreeNode node) {
    21         if(node == null) {
    22             return 0;
    23         }
    24         int leftLongestSinglePath = node.left != null && node.left.val == node.val ? longestSinglePath(node.left) + 1 : 0;
    25         int rightLongestSinglePath = node.right != null && node.right.val == node.val ? longestSinglePath(node.right) + 1 : 0;
    26         return Math.max(leftLongestSinglePath, rightLongestSinglePath);
    27     }
    28 }

    The problem with solution is that when computing longest sing path for a subtree, it does not memoize any smaller subtrees' computation result. It always recursively exhaust all nodes of a subtree to get the longest single path. Since each longestSingePath call recursively calls another two longestSinglePath, the runtime for this method alone is O(2^h), where h is the height of a given subtree. 

    Solution 2. Recursion with memoization when computing longest single path for a subtree.

     1 class Solution {
     2     class ResultType {
     3         int singlePath;
     4         int maxPath;
     5         Integer val;
     6         ResultType(int sp, int mp, Integer v) {
     7             this.singlePath = sp;
     8             this.maxPath = mp;
     9             this.val = v;
    10         }
    11     }
    12     public int longestUnivaluePath(TreeNode root) {
    13         ResultType result = helper(root);
    14         return result.maxPath;
    15     }
    16     private ResultType helper(TreeNode node) {
    17         if(node == null) {
    18             return new ResultType(0, 0, null);
    19         }
    20         ResultType left = helper(node.left);
    21         ResultType right = helper(node.right);
    22         int singlePath = 0;
    23         if(left.val != null && left.val == node.val) {
    24             singlePath = left.singlePath + 1;
    25         }
    26         if(right.val != null && right.val == node.val) {
    27             singlePath = Math.max(singlePath, right.singlePath + 1);
    28         }
    29         int maxPathWithoutCurrentNode = Math.max(left.maxPath, right.maxPath);
    30         int maxPathWithCurrentNode = 0;
    31         if(left.val != null && left.val == node.val) {
    32             maxPathWithCurrentNode += (left.singlePath + 1);
    33         }
    34         if(right.val != null && right.val == node.val) {
    35             maxPathWithCurrentNode += (right.singlePath + 1);
    36         }
    37         int maxPath = Math.max(maxPathWithoutCurrentNode, maxPathWithCurrentNode);
    38         return new ResultType(singlePath, maxPath, node.val);
    39     }
    40 }

    Solution 3. A cleaner implementation with the same memoization idea

     1 class Solution {
     2     int ans = 0;
     3     public int longestUnivaluePath(TreeNode root) {
     4         helper(root);
     5         return ans;
     6     }
     7     private int helper(TreeNode node) {
     8         if(node == null) {
     9             return 0;
    10         }
    11         int leftMaxPath = helper(node.left);
    12         int rightMaxPath = helper(node.right);
    13         int leftMaxPathWithCurrentNode = node.left != null && node.left.val == node.val ? leftMaxPath + 1 : 0;
    14         int rightMaxPathWithCurrentNode = node.right != null && node.right.val == node.val ? rightMaxPath + 1 : 0;
    15         ans = Math.max(ans, leftMaxPathWithCurrentNode + rightMaxPathWithCurrentNode);
    16         return Math.max(leftMaxPathWithCurrentNode, rightMaxPathWithCurrentNode);
    17     }
    18 }
  • 相关阅读:
    js和php中几种生成验证码的方式
    php中mysqli 处理查询结果集的几个方法
    100多个基础常用JS函数和语法集合大全
    js中的slice()、substring()、substr()、split()、join()、indexof()
    织梦dedecms标签大全总结
    0619-dedeCMS数据表
    0619-dedeCMS的安装、重装、目录说明、基本操作及注意事项
    0607-抽象类、抽象方法、接口、类的重载、类的自加载、对象的克隆
    0606-工厂模式、单例模式、DBDA的单例和完整功能
    js 替换/
  • 原文地址:https://www.cnblogs.com/lz87/p/10222911.html
Copyright © 2011-2022 走看看