zoukankan      html  css  js  c++  java
  • [LeetCode 1197] Minimum Knight Moves

    In an infinite chess board with coordinates from -infinity to +infinity, you have a knight at square [0, 0].

    A knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

    Return the minimum number of steps needed to move the knight to the square [x, y].  It is guaranteed the answer exists.

    Example 1:

    Input: x = 2, y = 1
    Output: 1
    Explanation: [0, 0] → [2, 1]
    

    Example 2:

    Input: x = 5, y = 5
    Output: 4
    Explanation: [0, 0] → [2, 1] → [4, 2] → [3, 4] → [5, 5]
    

    Constraints:

    • |x| + |y| <= 300

    Because x and y are constrained to be in range[-300, 300], we can use BFS to find the minimum steps needed to reach target(x, y). Furthermore, we can only consider the case that x >=0 && y >=0 since the chess board is symmetric.  The bfs implementation is pretty straightforward. There are two important points you need to be careful with.

    1.  Pruning. We can limit the search dimension within 310 * 310. Any moves that lead to a position that is outside this box will not yield an optimal result.

    2. Initially, you used a Set of type int[] to track visited positions. This caused TLE because you didn't overwrite the hashCode and equals methods for int[]. As a result, Set uses the default hashCode and equals method when checking if an element is already in the set. For equals(), The default implementation provided by the JDK is based on memory location — two objects are equal if and only if they are stored in the same memory address. For a comprehensive reading, refer to https://dzone.com/articles/working-with-hashcode-and-equals-in-java

    O(x * y) runtime and space

    class Solution {
        public int minKnightMoves(int x, int y) {
            x = Math.abs(x);
            y = Math.abs(y);
            int MAXN = 310, steps = 0;
            int[] dx = {-2,-1,1,2,2,1,-1,-2};
            int[] dy = {1,2,2,1,-1,-2,-2,-1};
            Queue<int[]> q = new LinkedList<>();
            boolean[][] visited = new boolean[MAXN][MAXN];
            q.add(new int[]{0,0});        
            visited[0][0] = true;
            
            while(q.size() > 0) {
                int sz = q.size();
                for(int i = 0; i < sz; i++) {
                    int[] curr = q.poll();
                    if(curr[0] == x && curr[1] == y) {
                        return steps;
                    }
                    for(int j = 0; j < 8; j++) {
                        int x1 = curr[0] + dx[j];
                        int y1 = curr[1] + dy[j];
                        if(x1 < 0 || y1 < 0 || x1 >= MAXN || y1 >= MAXN) {
                            continue;
                        }
                        if(!visited[x1][y1]) {
                            visited[x1][y1] = true;
                            q.add(new int[]{x1, y1});
                        }
                    }
                }
                steps++;
            }
            return -1;
        }
    }

    BFS with overriden hashCode() and equals(). The asymptotic runtime complexity is the same with using 2D boolean array to track visited positions. But it is slower due to all the Point objects creation overhead.

    class Solution {
        class Point {
            int x, y;
    
            Point(int x, int y) {
                this.x = x;
                this.y = y;
            }
    
            @Override
            public boolean equals(Object o) {
                if (this == o) return true;
                if (o == null || getClass() != o.getClass()) return false;
                Point point = (Point) o;
                return x == point.x &&
                        y == point.y;
            }
    
            @Override
            public int hashCode() {
                return Objects.hash(x, y);
            }
        }
        public int minKnightMoves(int x, int y) {
            x = Math.abs(x);
            y = Math.abs(y);
            int MAXN = 310, steps = 0;
            int[] dx = {-2,-1,1,2,2,1,-1,-2};
            int[] dy = {1,2,2,1,-1,-2,-2,-1};
            Queue<Point> q = new LinkedList<>();
            Set<Point> visited = new HashSet<>();
            Point sp = new Point(0, 0);
            q.add(sp);        
            visited.add(sp);
            
            while(q.size() > 0) {
                int sz = q.size();
                for(int i = 0; i < sz; i++) {
                    Point curr = q.poll();
                    if(curr.x == x && curr.y == y) {
                        return steps;
                    }
                    for(int j = 0; j < 8; j++) {
                        int x1 = curr.x + dx[j];
                        int y1 = curr.y + dy[j];
                        if(x1 < 0 || y1 < 0 || x1 >= MAXN || y1 >= MAXN) {
                            continue;
                        }
                        Point p = new Point(x1, y1);
                        if(!visited.contains(p)) {
                            visited.add(p);
                            q.add(p);
                        }
                    }
                }
                steps++;
            }
            return -1;
        }
    }
  • 相关阅读:
    c中static的作用
    数据分析人士必看的10个中文博客
    使用cat命令和EOF标识输出多行文件
    linux 查看系统信息命令(比较全)
    ORACLE 使用LEADING, USE_NL, ROWNUM调优
    Oracle Hint(提示)和INDEX(索引)的一些忠告
    Linux操作系统中巧用CD和Pushd切换目录
    索引失效的一些原因
    .NET使用一般处理程序生成验证码
    上传图片到指定文件目录,没有则创建目录
  • 原文地址:https://www.cnblogs.com/lz87/p/11565654.html
Copyright © 2011-2022 走看看