zoukankan      html  css  js  c++  java
  • [BinarySearch] Maximum Product Path in 2D Matrix

    You are given a two-dimensional list of integers matrix. You are currently at the top left corner and want to move to the bottom right corner. In each move, you can move down or right.

    Return the maximum product of the cells visited by going to the bottom right cell. If the result is negative, return -1. Otherwise, mod the result by 10 ** 9 + 7.

    Constraints

    • 1 ≤ n, m ≤ 20 where n and m are the number of rows and columns in matrix
    • -2 ≤ matrix[r][c] ≤ 2

    Example 1

    Input

    matrix = [
        [2, 1, -2],
        [-1, -1, -2],
        [1, 1, 1]
    ]

    Output

    8

    Explanation

    We can take the following path: [2, 1, -2, -2, 1].

    Dynamic programming:  This is essentially the 2D version of Maximum Subarray Product. We'll have 2 dp table: maxDp and minDp;  maxDp[i][j] is the max product path that ends at cell(i, j); minDp[i][j] is the min product path that ends at cell(i, j). The key here is that when matrix[i][j] is negative, we need to use the min of the previous 2 neighboring products to compute the max product; similiarly use the max of the previous 2 neighboring products to compute the min product at ends at cell(i, j).  The rest of the dp is pretty straightforward as shown in the following code.

    class Solution {
        public int solve(int[][] matrix) {
            int n = matrix.length, m = matrix[0].length, mod = (int)1e9 + 7;
            if(n == 0) return 0;
            long[][] maxDp = new long[n][m], minDp = new long[n][m];
            maxDp[0][0] = matrix[0][0];
            minDp[0][0] = matrix[0][0];
            for(int i = 1; i < n; i++) {
                maxDp[i][0] = maxDp[i - 1][0] * matrix[i][0];
                minDp[i][0] = minDp[i - 1][0] * matrix[i][0];
            }
            for(int j = 1; j < m; j++) {
                maxDp[0][j] = maxDp[0][j - 1] * matrix[0][j];
                minDp[0][j] = minDp[0][j - 1] * matrix[0][j];
            }
            for(int i = 1; i < n; i++) {
                for(int j = 1; j < m; j++) {
                    if(matrix[i][j] > 0) {
                        maxDp[i][j] = Math.max(maxDp[i - 1][j], maxDp[i][j - 1]) * matrix[i][j];     
                        minDp[i][j] = Math.min(minDp[i][j - 1], minDp[i - 1][j]) * matrix[i][j];
                    }
                    else if(matrix[i][j] < 0) {
                        maxDp[i][j] = Math.min(minDp[i - 1][j], minDp[i][j - 1]) * matrix[i][j];     
                        minDp[i][j] = Math.max(maxDp[i][j - 1], maxDp[i - 1][j]) * matrix[i][j];
                    }
                    else {
                        maxDp[i][j] = 0;
                        minDp[i][j] = 0;
                    }
                }
            }
            return maxDp[n - 1][m - 1] >= 0 ? (int)(maxDp[n - 1][m - 1] % mod) : -1;
        }
    }

    Related Problems

    Maximum Subarray Product

  • 相关阅读:
    解决Could not load file or assembly CefSharp.Core.dll的问题
    操作AppConfig.xml中AppSettings对应值字符串
    SqlServer根据时段统计数据
    Jquery Validation 多按钮,多表单,分组验证
    HDU 4630 No Pain No Game 线段树 和 hdu3333有共同点
    二叉查找树模板
    五边形数定理
    HDU 4651 Partition 整数划分,可重复情况
    CSU 1114 平方根大搜索 java大数
    hdu 4869 Turn the pokers
  • 原文地址:https://www.cnblogs.com/lz87/p/14370645.html
Copyright © 2011-2022 走看看