zoukankan      html  css  js  c++  java
  • [BinarySearch] Maximum Product Path in 2D Matrix

    You are given a two-dimensional list of integers matrix. You are currently at the top left corner and want to move to the bottom right corner. In each move, you can move down or right.

    Return the maximum product of the cells visited by going to the bottom right cell. If the result is negative, return -1. Otherwise, mod the result by 10 ** 9 + 7.

    Constraints

    • 1 ≤ n, m ≤ 20 where n and m are the number of rows and columns in matrix
    • -2 ≤ matrix[r][c] ≤ 2

    Example 1

    Input

    matrix = [
        [2, 1, -2],
        [-1, -1, -2],
        [1, 1, 1]
    ]

    Output

    8

    Explanation

    We can take the following path: [2, 1, -2, -2, 1].

    Dynamic programming:  This is essentially the 2D version of Maximum Subarray Product. We'll have 2 dp table: maxDp and minDp;  maxDp[i][j] is the max product path that ends at cell(i, j); minDp[i][j] is the min product path that ends at cell(i, j). The key here is that when matrix[i][j] is negative, we need to use the min of the previous 2 neighboring products to compute the max product; similiarly use the max of the previous 2 neighboring products to compute the min product at ends at cell(i, j).  The rest of the dp is pretty straightforward as shown in the following code.

    class Solution {
        public int solve(int[][] matrix) {
            int n = matrix.length, m = matrix[0].length, mod = (int)1e9 + 7;
            if(n == 0) return 0;
            long[][] maxDp = new long[n][m], minDp = new long[n][m];
            maxDp[0][0] = matrix[0][0];
            minDp[0][0] = matrix[0][0];
            for(int i = 1; i < n; i++) {
                maxDp[i][0] = maxDp[i - 1][0] * matrix[i][0];
                minDp[i][0] = minDp[i - 1][0] * matrix[i][0];
            }
            for(int j = 1; j < m; j++) {
                maxDp[0][j] = maxDp[0][j - 1] * matrix[0][j];
                minDp[0][j] = minDp[0][j - 1] * matrix[0][j];
            }
            for(int i = 1; i < n; i++) {
                for(int j = 1; j < m; j++) {
                    if(matrix[i][j] > 0) {
                        maxDp[i][j] = Math.max(maxDp[i - 1][j], maxDp[i][j - 1]) * matrix[i][j];     
                        minDp[i][j] = Math.min(minDp[i][j - 1], minDp[i - 1][j]) * matrix[i][j];
                    }
                    else if(matrix[i][j] < 0) {
                        maxDp[i][j] = Math.min(minDp[i - 1][j], minDp[i][j - 1]) * matrix[i][j];     
                        minDp[i][j] = Math.max(maxDp[i][j - 1], maxDp[i - 1][j]) * matrix[i][j];
                    }
                    else {
                        maxDp[i][j] = 0;
                        minDp[i][j] = 0;
                    }
                }
            }
            return maxDp[n - 1][m - 1] >= 0 ? (int)(maxDp[n - 1][m - 1] % mod) : -1;
        }
    }

    Related Problems

    Maximum Subarray Product

  • 相关阅读:
    zabbix添加Tomcat监控
    Jenkins发布
    Linux : 从私钥中提取公钥
    记一次拆机除尘换硅脂的经历,第一次拆机幸好没拆坏,心真大-_-!
    超简单让ubuntu开启wifi热点(亲测16.04与14.04可用)
    一起动手打造个人娱乐级linux
    python数据结构之链表(一)
    华为OJ机试题目:两个大整数相乘(纯C语言实现两个大整数相乘,两种方法实现大数相乘)
    C语言学习笔记---好用的函数memcpy与memset
    个人关于python装饰器的白痴理解
  • 原文地址:https://www.cnblogs.com/lz87/p/14370645.html
Copyright © 2011-2022 走看看