zoukankan      html  css  js  c++  java
  • [BinarySearch] Maximum Product Path in 2D Matrix

    You are given a two-dimensional list of integers matrix. You are currently at the top left corner and want to move to the bottom right corner. In each move, you can move down or right.

    Return the maximum product of the cells visited by going to the bottom right cell. If the result is negative, return -1. Otherwise, mod the result by 10 ** 9 + 7.

    Constraints

    • 1 ≤ n, m ≤ 20 where n and m are the number of rows and columns in matrix
    • -2 ≤ matrix[r][c] ≤ 2

    Example 1

    Input

    matrix = [
        [2, 1, -2],
        [-1, -1, -2],
        [1, 1, 1]
    ]

    Output

    8

    Explanation

    We can take the following path: [2, 1, -2, -2, 1].

    Dynamic programming:  This is essentially the 2D version of Maximum Subarray Product. We'll have 2 dp table: maxDp and minDp;  maxDp[i][j] is the max product path that ends at cell(i, j); minDp[i][j] is the min product path that ends at cell(i, j). The key here is that when matrix[i][j] is negative, we need to use the min of the previous 2 neighboring products to compute the max product; similiarly use the max of the previous 2 neighboring products to compute the min product at ends at cell(i, j).  The rest of the dp is pretty straightforward as shown in the following code.

    class Solution {
        public int solve(int[][] matrix) {
            int n = matrix.length, m = matrix[0].length, mod = (int)1e9 + 7;
            if(n == 0) return 0;
            long[][] maxDp = new long[n][m], minDp = new long[n][m];
            maxDp[0][0] = matrix[0][0];
            minDp[0][0] = matrix[0][0];
            for(int i = 1; i < n; i++) {
                maxDp[i][0] = maxDp[i - 1][0] * matrix[i][0];
                minDp[i][0] = minDp[i - 1][0] * matrix[i][0];
            }
            for(int j = 1; j < m; j++) {
                maxDp[0][j] = maxDp[0][j - 1] * matrix[0][j];
                minDp[0][j] = minDp[0][j - 1] * matrix[0][j];
            }
            for(int i = 1; i < n; i++) {
                for(int j = 1; j < m; j++) {
                    if(matrix[i][j] > 0) {
                        maxDp[i][j] = Math.max(maxDp[i - 1][j], maxDp[i][j - 1]) * matrix[i][j];     
                        minDp[i][j] = Math.min(minDp[i][j - 1], minDp[i - 1][j]) * matrix[i][j];
                    }
                    else if(matrix[i][j] < 0) {
                        maxDp[i][j] = Math.min(minDp[i - 1][j], minDp[i][j - 1]) * matrix[i][j];     
                        minDp[i][j] = Math.max(maxDp[i][j - 1], maxDp[i - 1][j]) * matrix[i][j];
                    }
                    else {
                        maxDp[i][j] = 0;
                        minDp[i][j] = 0;
                    }
                }
            }
            return maxDp[n - 1][m - 1] >= 0 ? (int)(maxDp[n - 1][m - 1] % mod) : -1;
        }
    }

    Related Problems

    Maximum Subarray Product

  • 相关阅读:
    安装oh-my-zsh
    Ubuntu下安装2017版QQ
    Ubuntu安装Git
    链接libtorrent库时出现的问题
    ubuntu 下重装mysql若干问题
    最简单的epoll的使用范例 : 监听 标准输入 ,并将数据回显到终端
    [转]Linux下CodeBlocks的交叉编译
    各种免费素材下载站点
    Qt5:图片彩色键控,设置图片中指定颜色的像素为透明
    C++:预处理指令
  • 原文地址:https://www.cnblogs.com/lz87/p/14370645.html
Copyright © 2011-2022 走看看