zoukankan      html  css  js  c++  java
  • [BinarySearch] Maximum Product Path in 2D Matrix

    You are given a two-dimensional list of integers matrix. You are currently at the top left corner and want to move to the bottom right corner. In each move, you can move down or right.

    Return the maximum product of the cells visited by going to the bottom right cell. If the result is negative, return -1. Otherwise, mod the result by 10 ** 9 + 7.

    Constraints

    • 1 ≤ n, m ≤ 20 where n and m are the number of rows and columns in matrix
    • -2 ≤ matrix[r][c] ≤ 2

    Example 1

    Input

    matrix = [
        [2, 1, -2],
        [-1, -1, -2],
        [1, 1, 1]
    ]

    Output

    8

    Explanation

    We can take the following path: [2, 1, -2, -2, 1].

    Dynamic programming:  This is essentially the 2D version of Maximum Subarray Product. We'll have 2 dp table: maxDp and minDp;  maxDp[i][j] is the max product path that ends at cell(i, j); minDp[i][j] is the min product path that ends at cell(i, j). The key here is that when matrix[i][j] is negative, we need to use the min of the previous 2 neighboring products to compute the max product; similiarly use the max of the previous 2 neighboring products to compute the min product at ends at cell(i, j).  The rest of the dp is pretty straightforward as shown in the following code.

    class Solution {
        public int solve(int[][] matrix) {
            int n = matrix.length, m = matrix[0].length, mod = (int)1e9 + 7;
            if(n == 0) return 0;
            long[][] maxDp = new long[n][m], minDp = new long[n][m];
            maxDp[0][0] = matrix[0][0];
            minDp[0][0] = matrix[0][0];
            for(int i = 1; i < n; i++) {
                maxDp[i][0] = maxDp[i - 1][0] * matrix[i][0];
                minDp[i][0] = minDp[i - 1][0] * matrix[i][0];
            }
            for(int j = 1; j < m; j++) {
                maxDp[0][j] = maxDp[0][j - 1] * matrix[0][j];
                minDp[0][j] = minDp[0][j - 1] * matrix[0][j];
            }
            for(int i = 1; i < n; i++) {
                for(int j = 1; j < m; j++) {
                    if(matrix[i][j] > 0) {
                        maxDp[i][j] = Math.max(maxDp[i - 1][j], maxDp[i][j - 1]) * matrix[i][j];     
                        minDp[i][j] = Math.min(minDp[i][j - 1], minDp[i - 1][j]) * matrix[i][j];
                    }
                    else if(matrix[i][j] < 0) {
                        maxDp[i][j] = Math.min(minDp[i - 1][j], minDp[i][j - 1]) * matrix[i][j];     
                        minDp[i][j] = Math.max(maxDp[i][j - 1], maxDp[i - 1][j]) * matrix[i][j];
                    }
                    else {
                        maxDp[i][j] = 0;
                        minDp[i][j] = 0;
                    }
                }
            }
            return maxDp[n - 1][m - 1] >= 0 ? (int)(maxDp[n - 1][m - 1] % mod) : -1;
        }
    }

    Related Problems

    Maximum Subarray Product

  • 相关阅读:
    poj3180 The Cow Prom
    洛谷P1434 滑雪
    洛谷P1199 三国游戏
    洛谷P1230 智力大冲浪
    洛谷P1012 拼数
    洛谷P1106 删数问题
    bzoj3538 [Usaco2014 Open]Dueling GPS
    Android(java)学习笔记134:Android数据存储5种方式总结
    Android(java)学习笔记133:Eclipse中的控制台不停报错Can't bind to local 8700 for debugger
    Android(java)学习笔记132:eclipse 导入项目是提示:某些项目因位于工作空间目录中而被隐藏。
  • 原文地址:https://www.cnblogs.com/lz87/p/14370645.html
Copyright © 2011-2022 走看看