zoukankan      html  css  js  c++  java
  • [LintCode] Longest Increasing Continuous Subsequence Review

    Give an integer array,find the longest increasing continuous subsequence in this array.

    An increasing continuous subsequence:

    • Can be from right to left or from left to right.
    • Indices of the integers in the subsequence should be continuous.

    Example

    For [5, 4, 2, 1, 3], the LICS is [5, 4, 2, 1], return 4.

    For [5, 1, 2, 3, 4], the LICS is [1, 2, 3, 4], return 4.

    Challenge: O(n) time and O(1) extra space

    Solution.

    Scan input array twice. The first time to find the length of LICS from left to right. The second time to find the length of LICS from right to left.

    During scanning, if the next element is strictly bigger than the previous element, increment len by 1, else init len to 1. After checking each element,

    update the current max length.

     1 public class Solution {
     2     public int longestIncreasingContinuousSubsequence(int[] A) {
     3         if(A == null || A.length == 0){
     4             return 0;
     5         }
     6         if(A.length == 1){
     7             return 1;
     8         }
     9         int max = 0; 
    10         int len = 1;
    11         for(int i = 1; i < A.length; i++){
    12             if(A[i] > A[i - 1]){
    13                 len++;
    14             }        
    15             else{
    16                 len = 1;
    17             }
    18             max = Math.max(max, len);
    19         }
    20         len = 1;
    21         for(int i = A.length - 2; i >= 0; i--){
    22             if(A[i] > A[i + 1]){
    23                 len++;    
    24             }
    25             else{
    26                 len = 1;
    27             }
    28             max = Math.max(max, len);
    29         }
    30         return max;
    31     }
    32 }

    Follow up question: Reconstruct an optimal solution from dynamic programming

    The above solution uses O(1) memory. What about if you need to return the start and end indices of a LICS(pick any if there is multiple answer)?

    Q: In this case, we need O(n) memory to store the lenght of an ICS that ends at each element.

    leftToRight[i]: from left to right, the length of the ICS that ends at A[i].

    rightToLeft[i]: from right to left, the length of the ICS that starts at A[i].

     1 public class Solution {
     2     public ArrayList<Integer> longestIncreasingContinuousSubsequence(int[] A) {
     3         if(A == null || A.length == 0){
     4             return 0;
     5         }
     6         if(A.length == 1){
     7             return 1;
     8         }
     9         int n = A.length;
    10         int[] leftToRight = new int[n]; int[] rightToLeft = new int[n];
    11         leftToRight[0] = 1; rightToLeft[n - 1] = 1;
    12         for(int i = 1; i < A.length; i++){
    13             if(A[i] > A[i - 1]){
    14                 leftToRight[i] = leftToRight[i - 1] + 1;
    15             }        
    16             else{
    17                 leftToRight[i] = 1;
    18             }
    19         }
    20         for(int i = A.length - 2; i >= 0; i--){
    21             if(A[i] > A[i + 1]){
    22                 rightToLeft[i] = rightToLeft[i + 1] + 1;    
    23             }
    24             else{
    25                 rightToLeft[i] = 1;
    26             }
    27         }
    28         int leftToRightEndIdx = 0; int rightToLeftStartIdx = n - 1;
    29         int leftToRightMax = 0; int rightToLeftMax = 0;
    30         for(int i = 0; i < n; i++){
    31             if(leftToRight[i] > leftToRightMax){
    32                 leftToRightMax = leftToRight[i];
    33                 leftToRightEndIdx = i;
    34             }
    35         }
    36         for(int i = n - 1; i >= 0; i--){
    37             if(rightToLeft[i] > rightToLeftMax){
    38                 rightToLeftMax = rightToLeft[i];
    39                 rightToLeftStartIdx = i;
    40             }
    41         }
    42         ArrayList<Integer> indices = new ArrayList<Integer>();
    43         if(leftToRightMax >= rightToLeftMax){
    44             indices.add(leftToRightEndIdx - leftToRightMax + 1);
    45             indices.add(leftToRightEndIdx);
    46         }
    47         indices.add(rightToLeftStartIdx);
    48         indices.add(rightToLeftStartIdx + rightToLeftMax - 1);
    49         return indices;
    50     }
    51 }

    Related Problems

    Longest Increasing Continuous subsequence II

  • 相关阅读:
    uva10422
    3259 spfa判断负环(邻接表)
    华东理工某ACMer总结
    POJ 1847 最短路径 垃圾水题可是坑爹多case问题初始化的锅
    HDU 1166 线段树基础题 基本模型
    用数组模拟邻接表
    优先队列
    POJ 3253 优先队列实现哈弗曼树
    POJ 3026 Kruskal+BFS
    POJ 1094差分约束系统拓扑排序
  • 原文地址:https://www.cnblogs.com/lz87/p/6936133.html
Copyright © 2011-2022 走看看