zoukankan      html  css  js  c++  java
  • [LintCode] Longest Increasing Continuous Subsequence Review

    Give an integer array,find the longest increasing continuous subsequence in this array.

    An increasing continuous subsequence:

    • Can be from right to left or from left to right.
    • Indices of the integers in the subsequence should be continuous.

    Example

    For [5, 4, 2, 1, 3], the LICS is [5, 4, 2, 1], return 4.

    For [5, 1, 2, 3, 4], the LICS is [1, 2, 3, 4], return 4.

    Challenge: O(n) time and O(1) extra space

    Solution.

    Scan input array twice. The first time to find the length of LICS from left to right. The second time to find the length of LICS from right to left.

    During scanning, if the next element is strictly bigger than the previous element, increment len by 1, else init len to 1. After checking each element,

    update the current max length.

     1 public class Solution {
     2     public int longestIncreasingContinuousSubsequence(int[] A) {
     3         if(A == null || A.length == 0){
     4             return 0;
     5         }
     6         if(A.length == 1){
     7             return 1;
     8         }
     9         int max = 0; 
    10         int len = 1;
    11         for(int i = 1; i < A.length; i++){
    12             if(A[i] > A[i - 1]){
    13                 len++;
    14             }        
    15             else{
    16                 len = 1;
    17             }
    18             max = Math.max(max, len);
    19         }
    20         len = 1;
    21         for(int i = A.length - 2; i >= 0; i--){
    22             if(A[i] > A[i + 1]){
    23                 len++;    
    24             }
    25             else{
    26                 len = 1;
    27             }
    28             max = Math.max(max, len);
    29         }
    30         return max;
    31     }
    32 }

    Follow up question: Reconstruct an optimal solution from dynamic programming

    The above solution uses O(1) memory. What about if you need to return the start and end indices of a LICS(pick any if there is multiple answer)?

    Q: In this case, we need O(n) memory to store the lenght of an ICS that ends at each element.

    leftToRight[i]: from left to right, the length of the ICS that ends at A[i].

    rightToLeft[i]: from right to left, the length of the ICS that starts at A[i].

     1 public class Solution {
     2     public ArrayList<Integer> longestIncreasingContinuousSubsequence(int[] A) {
     3         if(A == null || A.length == 0){
     4             return 0;
     5         }
     6         if(A.length == 1){
     7             return 1;
     8         }
     9         int n = A.length;
    10         int[] leftToRight = new int[n]; int[] rightToLeft = new int[n];
    11         leftToRight[0] = 1; rightToLeft[n - 1] = 1;
    12         for(int i = 1; i < A.length; i++){
    13             if(A[i] > A[i - 1]){
    14                 leftToRight[i] = leftToRight[i - 1] + 1;
    15             }        
    16             else{
    17                 leftToRight[i] = 1;
    18             }
    19         }
    20         for(int i = A.length - 2; i >= 0; i--){
    21             if(A[i] > A[i + 1]){
    22                 rightToLeft[i] = rightToLeft[i + 1] + 1;    
    23             }
    24             else{
    25                 rightToLeft[i] = 1;
    26             }
    27         }
    28         int leftToRightEndIdx = 0; int rightToLeftStartIdx = n - 1;
    29         int leftToRightMax = 0; int rightToLeftMax = 0;
    30         for(int i = 0; i < n; i++){
    31             if(leftToRight[i] > leftToRightMax){
    32                 leftToRightMax = leftToRight[i];
    33                 leftToRightEndIdx = i;
    34             }
    35         }
    36         for(int i = n - 1; i >= 0; i--){
    37             if(rightToLeft[i] > rightToLeftMax){
    38                 rightToLeftMax = rightToLeft[i];
    39                 rightToLeftStartIdx = i;
    40             }
    41         }
    42         ArrayList<Integer> indices = new ArrayList<Integer>();
    43         if(leftToRightMax >= rightToLeftMax){
    44             indices.add(leftToRightEndIdx - leftToRightMax + 1);
    45             indices.add(leftToRightEndIdx);
    46         }
    47         indices.add(rightToLeftStartIdx);
    48         indices.add(rightToLeftStartIdx + rightToLeftMax - 1);
    49         return indices;
    50     }
    51 }

    Related Problems

    Longest Increasing Continuous subsequence II

  • 相关阅读:
    关于android4.3 bluetooth4.0的那些事儿
    一个比较简单的夜间模式实现
    Android类装载器DexClassLoader的简单使用-----制作android插件的前奏
    Android学习笔记之 网络状态监听
    Android 学习笔记之 SQLite基础用法
    Android 学习笔记之 JSON的序列化基本用法
    Android学习笔记之 仿QQ登录界面的实现
    Android学习笔记之 生成KeyStore和给apk添加签名
    ArcGis for Android学习笔记之AsyncTask和IdentifyTask的应用
    Android学习笔记之 jar包的导入和异常处理
  • 原文地址:https://www.cnblogs.com/lz87/p/6936133.html
Copyright © 2011-2022 走看看