zoukankan      html  css  js  c++  java
  • [LintCode] Longest Consecutive Sequence

    Given an unsorted array of integers, find the length of the longest consecutive elements sequence.

    Clarification

    Your algorithm should run in O(n) complexity.

    Example

    Given [100, 4, 200, 1, 3, 2],
    The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4.

    Solution 1.  O(n * log n) runtime using sorting 

    Algorithm:

    1. sort the array;

    2. iterate through the sorted array and process each element in the following 3 possible cases.

      a. num[i] - num[i - 1] == 1, currMaxLen++;

      b. num[i] - num[i - 1] != 1 && num[i] != num[i - 1], the current sequence discontinues, reset currMaxLen to 1;

      c. num[i] == num[i - 1], the current sequence should continue, do nothing. 

     1 public class Solution {
     2     public int longestConsecutive(int[] num) {
     3         if(num == null || num.length == 0){
     4             return 0;
     5         }
     6         Arrays.sort(num);
     7         int maxLen = 1, currMaxLen = 1;
     8         for(int i = 1; i < num.length; i++){
     9             if(num[i] - num[i - 1] == 1){
    10                 currMaxLen++;
    11             }
    12             else if(num[i] != num[i - 1]){
    13                 currMaxLen = 1;
    14             }
    15             maxLen = Math.max(maxLen, currMaxLen);
    16         }
    17         return maxLen;
    18     }
    19 }

    Solution 2. O(n * log n) runtime, O(n) space using min priority queue.

    Similiarly with solution 1, we can use a min pq to replace the effect of sorting.

     1 public class Solution {
     2     public int longestConsecutive(int[] num) {
     3         if(num == null || num.length == 0){
     4             return 0;
     5         }
     6         PriorityQueue<Integer> minPq = new PriorityQueue<Integer>(num.length);
     7         for(int i = 0; i < num.length; i++){
     8             minPq.add(num[i]);
     9         }
    10         int prevMin = Integer.MAX_VALUE, currMin = Integer.MIN_VALUE;
    11         int currMaxLen = 1, maxLen = Integer.MIN_VALUE;
    12         while(minPq.size() != 0){
    13             currMin = minPq.poll();
    14             if(currMin - prevMin == 1){
    15                 currMaxLen++;
    16             }
    17             else if(currMin != prevMin){
    18                 currMaxLen = 1;
    19             }
    20             prevMin = currMin;
    21             maxLen = Math.max(maxLen, currMaxLen);
    22         }
    23         return maxLen;
    24     }
    25 }

    Solution 3.  O(n) runtime, O(n) space, Using HashSet

    Algorithm:  Store all elements into a hash set, thus only unique elements are stored. 

    Iterate through all elements in num. For each num[i], go down and up to find the longest

    consecutive sequence that has num[i] in it.  In each iteration, delete all the elements

    that appear in the current consecutive sequence. Doing this makes this algorithm more

    efficient as it will not redudantly consider the same sequence more than once. 

     1 public class Solution {
     2     public int longestConsecutive(int[] num) {
     3         if(num == null || num.length == 0){
     4             return 0;
     5         } 
     6         HashSet<Integer> set = new HashSet<Integer>();
     7         for(int i = 0; i < num.length; i++){
     8             set.add(num[i]);
     9         }
    10         int longest = 0;
    11         for(int i = 0; i < num.length; i++){
    12             int down = num[i] - 1;
    13             while(set.contains(down)){
    14                 set.remove(down);
    15                 down--;
    16             }
    17             int up = num[i] + 1;
    18             while(set.contains(up)){
    19                 set.remove(up);
    20                 up++;
    21             }
    22             set.remove(num[i]);
    23             longest = Math.max(longest, up - down - 1);
    24         }
    25         return longest;
    26     }
    27 }

    Related Problems 

    Binary Tree Longest Consecutive Sequence 

    Binary Tree Longest Consecutive Sequence III

    Longest Increasing Subsequence 

  • 相关阅读:
    三路快排
    双路快排
    随机快排
    快速排序
    双向链表
    单向链表
    堆排序
    二分插入、bisect
    jmockit使用总结-MockUp重点介绍
    java拼接字符串、格式化字符串方式
  • 原文地址:https://www.cnblogs.com/lz87/p/7203661.html
Copyright © 2011-2022 走看看