zoukankan      html  css  js  c++  java
  • [LeetCode 300] Longest Increasing Subsequence

    Given a sequence of integers, find the longest increasing subsequence (LIS).

    You code should return the length of the LIS.

    Clarification

    What's the definition of longest increasing subsequence?

    • The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.

    • https://en.wikipedia.org/wiki/Longest_increasing_subsequence

    Example

    For [5, 4, 1, 2, 3], the LIS is [1, 2, 3], return 3
    For [4, 2, 4, 5, 3, 7], the LIS is [2, 4, 5, 7], return 4

    Challenge 

    Time complexity O(n^2) or O(nlogn)

    According to the definition of subsequence, we can't apply sorting as it changes the relative ordering of the orginal array. 

     

    Solution 1. Dynamic Programming, O(n^2) runtime, O(n) space

    Since the problem asks for an optimal result, the longest increasing subsequence, we should consider dynamic programming. 

    A sequence must end at one element,  so we can break the original problem into n subproblems as calculating the LIS whose

    ending element is nums[0], nums[1]......., nums[n - 1].

     

    For each subproblem calculating the LIS whose ending element is nums[i], 

    LIS(i) = max{LIS(j) + 1}, for j = 0 ....... i - 1 and nums[j] < nums[i]

     

    With the above recursive formula, we can solve this problem recursively as follows.

     1 public class Solution {
     2     private int max = 0;
     3     public int longestIncreasingSubsequence(int[] nums) {
     4         for(int i = 0; i < nums.length; i++){
     5             helper(nums, i);
     6         }
     7         return max;    
     8     }
     9     private int helper(int[] nums, int endIdx){
    10         int len = 1;
    11         for(int j = 0; j < endIdx; j++){
    12             if(nums[j] < nums[endIdx]){
    13                 len = Math.max(len, helper(nums, j) + 1);
    14             }
    15         }    
    16         if(len > max){
    17             max = len;
    18         }
    19         return len;
    20     }
    21 }

     

    The problem of this recursive solution is that we have overlapping subproblems.

    For example, let's assume j < k < i, nums[j] < nums[k] < nums[i]. 

    When calculating LIS(k) and LIS(i), LIS(j) are calculated twice, doing redudant work.

    To get rid of this redundancy, we use dynamic programming.

    State: len[i]: the LIS that ends at nums[i];

    Function: len[i] = Max(len[i], len[j] + 1), for j = 0..... i - 1 && nums[j] < nums[i];

    O(n) space can't be optimized further as for any given subproblems, all its smaller subproblems'

    results are needed to calculate its LIS.

     1 public class Solution {
     2     public int longestIncreasingSubsequence(int[] nums) {
     3         int[] len = new int[nums.length];
     4         int max = 0;
     5         for (int i = 0; i < nums.length; i++) {
     6             len[i] = 1;
     7             for (int j = 0; j < i; j++) {
     8                 if (nums[j] < nums[i]) {
     9                     len[i] = len[i] > len[j] + 1 ? len[i] : len[j] + 1;
    10                 }
    11             }
    12             if (len[i] > max) {
    13                 max = len[i];
    14             }
    15         }
    16         return max;
    17     }
    18 }

     

     

    Solution 2. O(n * log n) runtime using Binary search and Stack

    There is a really good reference to this algorithm:  Solving LIS with Patience solitaire.

    class Solution {
        public int lengthOfLIS(int[] nums) {
            int n = nums.length;
            List<ArrayDeque<Integer>> qList = new ArrayList<>();
            for(int i = 0; i < n; i++) {
                int idx = binarySearch(qList, nums[i]);
                if(idx == qList.size()) {
                    qList.add(new ArrayDeque<>());
                }
                ArrayDeque<Integer> q = qList.get(idx);
                q.addFirst(nums[i]);
            }
            return qList.size();
        }
        private int binarySearch(List<ArrayDeque<Integer>> qList, int v) {
            if(qList.size() > 0) {
                int l = 0, r = qList.size() - 1;
                while(l < r) {
                    int mid = l + (r - l) / 2;
                    if(qList.get(mid).peekFirst() < v) {
                        l = mid + 1;
                    }
                    else {
                        r = mid;
                    }
                }
                if(qList.get(l).peekFirst() >= v) {
                    return l;
                }
            }
            return qList.size();
        }
    }

     

     

    Related Problems 

    [LeetCode 1713] Minimum Operations to Make a Subsequence

    Longest Bitonic Subsequence

    [Coding Made Simple] Maximum Sum Increasing Subsequence

    Largest Divisible Subset

    Frog Jump

    Russian Doll Envelopes 

  • 相关阅读:
    JAVA中的多态
    JAVA中的策略模式strategy
    JAVA中的clone方法剖析
    JAVA虚拟机中的堆内存Heap与栈内存Stack
    JAVA垃圾回收分代处理思想
    JAVA 垃圾回收机制
    JAVA内存管理
    混迹于博客园很久了,今天终于有了自己的博客园:coding-of-love 嘿嘿
    小程序富文本wxParse转换不成功的解决办法,填坑
    elementui级联选择器 如何设置多选?
  • 原文地址:https://www.cnblogs.com/lz87/p/7203674.html
Copyright © 2011-2022 走看看