zoukankan      html  css  js  c++  java
  • [LintCode] Find the Missing Number

    Given an array contains N numbers of 0 .. N, find which number doesn't exist in the array.

    Example

    Given N = 3 and the array [0, 1, 3], return 2.

    Challenge 

    Do it in-place with O(1) extra memory and O(n) time.

    Solution 1. O(n*logn) runtime using sorting 

    Sort the input array;

    Then iterate through the array and find i that nums[i] != i;

    If found one, return it; If not, return nums.length.

     1 public class Solution {
     2     public int findMissing(int[] nums) {
     3         if(nums == null || nums.length == 0){
     4             return -1;
     5         }
     6         Arrays.sort(nums);
     7         int i = 0;
     8         for(; i < nums.length; i++){
     9             if(nums[i] != i){
    10                 return i;
    11             }
    12         }
    13         return i;
    14     }
    15 }

    Solution 2. O(n) runtime, O(1) space, by swapping elements to make nums[i] = i.

    In solution 1,  the key idea is to change the input array into an ascending order then find the index that nums[index] != index.

    The bottleneck here is the O(n*logn) sorting.  We can leverage the same idea from First Missing Positive and achieve 

    the re-ordering in O(n) runtime by only swapping elements.

    Algorithm: provide the input array the property of nums[i] = i by swapping elements in O(n) time.

    Since there is one number missing from 0 to N, a linear scan of the changed array finds the index i that nums[i] != i, this 

    index is the missing number.

    Each while loop moves the current number nums[i] to its right location that satisfies nums[i] = i. The only exception is that 

    if the array has the number N. Because the largest index of nums is N - 1, nums[N] causes array index out of bound error.

    So if nums[i] == N, we skip swapping it. 

     1 public class Solution{
     2     public int findMissing(int[] nums){
     3         if(nums == null || nums.length == 0){
     4             return - 1;
     5         }
     6         for(int i = 0; i < nums.length; i++){
     7             while(nums[i] != i && nums[i] < nums.length){
     8                 int temp = nums[nums[i]];
     9                 nums[nums[i]] = nums[i];
    10                 nums[i] = temp;
    11             } 
    12         }
    13         int missing = 0;
    14         for(; missing < nums.length; missing++){
    15             if(nums[missing] != missing){
    16                 break;    
    17             }    
    18         }
    19         return missing;
    20     }
    21 }

    Solution 3. O(n) runtime, O(1) space, find summation difference 

    This solution is not good as solution 2 or 4 because the sum here can be very big and causes overflow. 

    The following code uses type long to address this issue. But in the extreme cases even long type may

    overflow.

     1 public class Solution {
     2     public int findMissing(int[] nums) {
     3         if(nums == null || nums.length == 0){
     4             return -1;
     5         }
     6         long sum1 = 0, sum2 = 0;
     7         for(int i = 0; i <= nums.length; i++){
     8             sum1 += i;
     9         }
    10         for(int i = 0; i < nums.length; i++){
    11             sum2 += nums[i];
    12         }
    13         return (int)(sum1 - sum2);
    14     }
    15 }

    Solution 4. O(n) time, O(1) space, Bitwise operation 

    Algorithm:

    1. xor all the array elements, let the result be x1;

    2. xor all numbers from 0 to n, let the result be x2;

    3. x1 ^ x2 gives the missing number.

    Proof of correctness:

    Say we are give A0, A1, A2, A4;  A3 is missing.

    X1 = A0 ^ A1 ^ A2 ^ A4;

    X2 = A0 ^ A1 ^ A2 ^ A3 ^ A4;

    X1 ^ X2 = (A0 ^ A1 ^ A2 ^ A4) ^ (A0 ^ A1 ^ A2 ^ A3 ^ A4)

             =  (A0 ^ A0) ^ (A1 ^ A1) ^ (A2 ^ A2) ^ A3 ^ (A4 ^ A4)

                  = 0 ^ 0 ^ 0 ^ A3 ^ 0

        = A3

     1 public class Solution {
     2     public int findMissing(int[] nums) {
     3         if(nums == null || nums.length == 0){
     4             return -1;
     5         }
     6         int xor1 = 0, xor2 = nums[0];
     7         for(int i = 1; i <= nums.length; i++){
     8             xor1 ^= i;
     9         }
    10         for(int i = 1; i < nums.length; i++){
    11             xor2 ^= nums[i];
    12         }
    13         return xor1 ^ xor2;
    14     }
    15 }

    Related Problems

    Find the Duplicate Number 

    Find the Missing Number II

    Find Missing Positive

  • 相关阅读:
    归并排序
    [转]html5 Canvas画图教程(1)—画图的基本常识
    [转]浏览器工作原理
    [转]Web开发者和设计师必须要知道的 iOS 8 十个变化
    mobile web开发(1) html页面头部基本设置
    差点难产的HTML5
    感觉离开了好久
    Java----区别
    MySQL---sql语句优化
    MySQL---数据库优化
  • 原文地址:https://www.cnblogs.com/lz87/p/7204849.html
Copyright © 2011-2022 走看看