zoukankan      html  css  js  c++  java
  • [Coding Made Simple] Subset Sum Problem

    Given a set of non negative integers and a target value, find if there exists a subset in the given set whose sum is target.

     Solution 1. Enumerate all possible subsets and check if their sum is the target

      The runtime of this solution is O(2^n).  This enumeration algorithm is similar with the problem Subsets. The difference is 

    that Subsets has to get all possible subsets. But this problem can terminate the check earlier if for one element arr[startIdx]

    including it in the subset and not including it both returns a false check. This is correct because for any subsets, it either has

    arr[startIdx] or does not have it.

     1 import java.util.Arrays;
     2 public class Subsets {
     3     public boolean findIfExistSubset(int[] arr, int target){
     4         if(target == 0){
     5             return true;
     6         }
     7         if(arr == null || arr.length == 0 || target < 0){
     8             return false;
     9         }
    10         Arrays.sort(arr);
    11         if(target < arr[0] || target >= arr[arr.length - 1] * arr.length){
    12             return false;
    13         }
    14         return helper(arr, 0, 0, target);
    15     }
    16     private boolean helper(int[] arr, int startIdx, int currSum, int target){
    17         if(currSum == target){
    18             return true;
    19         }
    20         if(currSum > target){
    21             return false;
    22         }
    23         if(startIdx >= arr.length){
    24             return false;
    25         }
    26         currSum += arr[startIdx];
    27         if(helper(arr, startIdx + 1, currSum, target)){
    28             return true;
    29         }
    30         currSum -= arr[startIdx];
    31         if(helper(arr, startIdx + 1, currSum, target)){
    32             return true;
    33         }
    34         return false;
    35     }
    36 }

    Solution 2. Dynamic Programming, runtime is O(arr.length * target), space complexity is O(arr.length * target)

     State: T[i][j]: if total sum j can be found from a subset from arr[0......i - 1];

    Function: T[i][j] = T[i - 1][j] || T[i - 1][j - arr[i - 1]],  if j >= arr[i - 1];  if the current target j is >= arr[i - 1], it means that we can possibly select arr[i - 1] as part of the subset. T[i][j] will be either not selecting arr[i - 1] (T[i - 1][j]) or selecting arr[i - 1] (T[i - 1][j - arr[i - 1]]);

        T[i][j] = T[i - 1][j], if j < arr[i - 1]; if j < arr[i - 1], it means we can't select arr[i - 1].

         i - 1 here indicates that for each element in arr[], it can only be selected at most once.  

    Init: T[i][0] = true for i in [0, arr.length]; this means when the target is 0, then for set arr[0.... i - 1] we always have the empty set that sums up to 0.

    Answer: T[arr.length][target]

     1 public boolean findIfExistSubsetDp(int[] arr, int target){
     2     boolean[][] T = new boolean[arr.length + 1][target + 1];
     3     for(int i = 0; i <= arr.length; i++){
     4         T[i][0] = true;
     5     }
     6     for(int i = 1; i <= arr.length; i++){
     7         for(int j = 1; j <= target; j++){
     8             if(j >= arr[i - 1]){
     9                 T[i][j] = T[i - 1][j] || T[i - 1][j - arr[i - 1]];
    10             }
    11             else{
    12                 T[i][j] = T[i - 1][j];
    13             }
    14         }            
    15     }
    16     return T[arr.length][target];
    17 }

    Optimized Dp solution with O(target) space

     1 public boolean findIfExistSubsetDp(int[] arr, int target){
     2     boolean[][] T = new boolean[2][target + 1];
     3     T[0][0] = true;
     4     for(int i = 1; i <= arr.length; i++){
     5         T[i % 2][0] = true;
     6         for(int j = 1; j <= target; j++){
     7             if(j >= arr[i - 1]){
     8                 T[i % 2][j] = T[(i - 1) % 2][j] || T[(i - 1) % 2][j - arr[i - 1]];
     9             }
    10             else{
    11                 T[i % 2][j] = T[(i - 1) % 2][j];
    12             }
    13         }            
    14     }
    15     return T[arr.length % 2][target];
    16 }

     Follow up question: 

    What about if we change the condition so that each element in the input set can be selected more than once? 

    The change needs to make is that when the current element arr[i - 1] can be selected, we don't exclude it from

    being selected again.

    T[i][j] = T[i - 1][j] || T[i][j - arr[i - 1]];  

     1 public boolean findIfExistSubsetDp(int[] arr, int target){
     2     boolean[][] T = new boolean[arr.length + 1][target + 1];
     3      for(int i = 0; i <= arr.length; i++){
     4          T[i][0] = true;
     5      }
     6      for(int i = 1; i <= arr.length; i++){
     7          for(int j = 1; j <= target; j++){
     8              if(j >= arr[i - 1]){
     9                  T[i][j] = T[i - 1][j] || T[i][j - arr[i - 1]];
    10              }
    11              else{
    12                  T[i][j] = T[i - 1][j];
    13              }
    14          }            
    15     }
    16     return T[arr.length][target];
    17 }

    Related Problems

    Subsets

    Backpack(Knapsack) problems

  • 相关阅读:
    关于源码编译每次提示有错误 要make update-api
    如何在Android中添加系统服务
    git查看每个版本间的差异
    achartengine画出动态折线图
    java中基本数据类型和C语言中基本数据类型转换
    获取图片的真实宽高
    hdu-2066-一个人的旅行
    Linux内核模块编程与内核模块LICENSE -《具体解释(第3版)》预读
    Android平台Camera实时滤镜实现方法探讨(十一)--实时美颜滤镜
    ios9定位服务的app进入后台三分钟收不到经纬度,应用被挂起问题及解决方式
  • 原文地址:https://www.cnblogs.com/lz87/p/7284541.html
Copyright © 2011-2022 走看看