zoukankan      html  css  js  c++  java
  • [LintCode] Palindrome Partitioning II

    Given a string s, cut s into some substrings such that every substring is a palindrome.

    Return the minimum cuts needed for a palindrome partitioning of s.

    Example

    Given s = "aab",

    Return 1 since the palindrome partitioning ["aa", "b"] could be produced using 1 cut.

    Solution 1. Recursion and backtracking

    A straightforward solution is to check all valid partitions and get the minimum cut.

    1. First fix a substring and check if palindromic, if it is, add this substring to a list and 

    recursively partition the rest of the string.

    2. After the entire string is partitioned, update the min cut if necessary.

    3. Backtrack to check other valid partitions. 

    Efficiency: This algorithm is very inefficient for the following two reasons.

    1. The same subproblem is computed redundantly. 

      The following recursion tree shows this.

                "aabbc"

         "abbc"              "bbc"            

       "bbc" 

     2.  Substring palindrome check does not use smaller substring's check result.

           For string "abcd",  if we've checked "bc" is not palindromic, then for sure 

      "abcd" is not palindromic. isPalindorme() does the O(n) check for all substrings,

      not using previous check results. 

     1 public class Solution {
     2     public int minCut(String s) {
     3         if(s == null || s.length() == 0)
     4         {
     5             return -1;
     6         }
     7         ArrayList<Integer> minCut = new ArrayList<Integer>(1);
     8         minCut.add(s.length() - 1);
     9         
    10         minCutHelper(minCut, new ArrayList<String>(), s, 0);
    11 
    12         return minCut.get(0);
    13     }
    14     
    15     private void minCutHelper(ArrayList<Integer> currMinCut, 
    16                               List<String> curr,
    17                               String s, 
    18                               int startIdx)
    19     {
    20         if(curr.size() > 0 && startIdx >= s.length())
    21         {
    22             if((curr.size() - 1) < currMinCut.get(0))
    23             {
    24                 currMinCut.set(0, curr.size() - 1);
    25             }
    26             return;
    27         }
    28         
    29         for(int i = startIdx; i < s.length(); i++)
    30         {
    31             if(isPalindrome(s, startIdx, i))
    32             {
    33                 curr.add(s.substring(startIdx, i + 1));
    34                 minCutHelper(currMinCut, curr, s, i + 1);
    35                 curr.remove(curr.size() - 1);
    36             }
    37         }
    38     }
    39     
    40     private boolean isPalindrome(String str, int left, int right)
    41     {
    42         while(left <= right)
    43         {
    44             if(str.charAt(left) != str.charAt(right))
    45             {
    46                 return false;
    47             }
    48             left++;
    49             right--;
    50         }
    51         return true;
    52     }
    53 }

    Solution 2. Dynamic Programming

    To address the two performance issues in solution 1, we make some time-space tradeoff.

    State:

    pal[i][j] stores if s[i....j] is palindromic or not. 

    minCuts[i] stores the minimal cuts needed to partition substring s[0....i].

    Initialization:

    pa[i][i] = true, as one character is palindromic.

    pa[i][i + 1] = s.charAt(i) == s.charAt(i + 1).

    minCuts[i] = i, as the most cuts for a string of length i + 1 is i. 

    Function:

    pal[i][j] = pal[i + 1][j - 1] && s.charAt(i) == s.charAt(j);  compute the result of shorter length substrings first, as they will be used to compute longer substrings' result.

    For a given substring s[0...j], we check all possible partitions.

    If pal[i][j] == true, s[i....j] is a valid palindromic partition, then the problem of s[0...j] can be reduced to s[0... i - 1] + 1, 1 represents the partition of s[i][j].

      a.  if i == 0, if s[0...j] is palindromic, then no cut is needed for s[0...j].

            minCuts[j] = 0;

      b.  if i > 0, 

         minCuts[j] = Math.min(minCuts[j], minCuts[i - 1] + 1), i is from 1 to j;

     1 public class Solution {
     2     public int minCut(String s) {
     3         if(s == null || s.length() <= 1){
     4             return 0;
     5         }    
     6         int len = s.length();
     7         int[] minCuts = new int[len];
     8         boolean[][] pal = new boolean[len][len];
     9         for (int i = 0; i < len; i++) {
    10             pal[i][i] = true;
    11         }
    12         for (int i = 0; i < len - 1; i++) {
    13             pal[i][i + 1] = (s.charAt(i) == s.charAt(i + 1));
    14         }
    15         for(int i = 0; i < len; i++){
    16             minCuts[i] = i;
    17         }
    18         for (int i = len - 3; i >= 0; i--) {
    19             for (int j = i + 2; j < len; j++) {
    20                 pal[i][j] = pal[i + 1][j - 1] && s.charAt(i) == s.charAt(j);
    21             }
    22         }
    23         for(int i = 0; i < len; i++){
    24             for(int j = 0; j <= i; j++){
    25                 if(pal[j][i]){
    26                     if(j == 0){
    27                         minCuts[i] = 0;
    28                     }
    29                     else{
    30                         minCuts[i] = Math.min(minCuts[i], minCuts[j - 1] + 1);
    31                     }
    32                 }
    33             }
    34         }
    35         return minCuts[len - 1];
    36     }
    37 }

    The above dp uses a 1D array minCuts[i] to store min cut of substring s[0....i].  

    This is similar with Text Justification and Word Break.

    Text Justification:  minCost[i] = min { minCost[j] + cost[j + 1][i] }

    Word Break:  dp[i] = dp[i - lastWordLen] && dict.contains(s.substring(i - lastWordLen, i));  

          dp[i]: if s[0....... i - 1] can be broken into words in dict.

    Related Problems 

    Wiggle Sort II

    Palindrome Partitioning 

    Longest Palindromic Substring

  • 相关阅读:
    网络密钥交换协议——Diffie-Hellman
    【剑指Offer】俯视50题之1-10题
    分治
    《Java程序猿面试笔试宝典》之Java程序初始化的顺序是如何的
    China Final J
    MVC入门
    1,单例模式
    运行耗时统计
    普通方法调用,Invoke,begininvoke三者的区别总结及异步与同步的区别总结
    几种查询方法(lambda Linq Enumerable静态类方式)
  • 原文地址:https://www.cnblogs.com/lz87/p/7432883.html
Copyright © 2011-2022 走看看